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Chapter 1

Introduction

Order Acceptance (OA) is one of the main functions in a business control
framework. Basically, OA involves for each incoming order a 0/1 (i.e., reject
/ accept) decision. Traditionally this problem is solved as follows: always
accept an order if sufficient capacity is available. However, always accepting an
order even when capacity is available could disable the system to accept more
profitable orders in the future. This unpleasantness is measured by means of
the concept of opportunity cost, namely: the highest-valued alternative that
one is losing. Here we shall focus on decision rules that take opportunity costs
into account.

An important aspect for OA is the availability of information to the decision
maker. Generally in the literature information regarding negotiation with the
customer such as an estimate of the work content of an order, a norm for the
necessary processing time, the price and the due-date are assumed to be known
or estimated, and a model of the production process is also considered to be
known beforehand. However it could be difficult to obtain such information.
Uncertainty in OA has received little attention in dynamic models. Applying
dynamic models with uncertainty could be very expensive in computation time.
Also there may be different degrees of uncertainty, e.g., with respect to order
arrivals, processing times, machine break downs, etc. Moreover, one may not
know the parameters of the stochastic dynamics.

In this study we consider order acceptance under uncertainty taking into
account opportunity costs. For this purpose we use a stochastic modeling
approach using Markov decision theory and learning methods from Artificial
Intelligence. Markov decision theory is known to be useful modeling deci-
sion making under uncertainty. Learning methods from Artificial Intelligence
have been used to deal with incomplete information and to cope with complex
problems with implicit information. Reinforcement Learning is a promising
approach that combines useful modeling and solution ideas. There are some
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aspects that make Reinforcement Learning (RL) appealing for our problem.
The idea of learning without the necessity of complete model information and
the possibility of learning even from delayed rewards allows us to consider dif-
ferent degrees of uncertainty and to take into account the opportunity cost
problem in a natural way. Although RL has successful applications in vari-
ous areas, these applications are not always fully understood at a theoretical
level. It means that convergence properties of the corresponding algorithms
and procedures for tuning the parameters in the algorithms have to be ex-
plored. Hence, much work still has to be done in order to understand how RL
can best be applied to a problem and to get insight into why some domains are
considerably more tractable for RL than others.

Summarizing, in this thesis we shall deal with the following research ques-
tions:

1. How can we model OA under uncertainty taking into account opportunity
costs?

2. How to tune the parameters for RL?

3. How does RL perform compared to other heuristics for OA?

4. How can we interpret the knowledge learned by using the RL approach
in OA under uncertainty?

This chapter is organized as follows. In Section 1.1 we present a charac-
terization of the Order Acceptance problem that is used consequently in the
models of this thesis. In Section 1.2 we present the main ideas of this thesis
about the models and the approach to solve them. In Section 1.3 we review
the literature on Order Acceptance and on Reinforcement Learning. In Section
1.4 we present an example of the OA problem as studied in this thesis. We
conclude this chapter with an outline of the thesis in Section 1.5.

1.1 Order Acceptance under uncertainty

Order Acceptance (OA) is one of the main functions in a business control
framework at tactical planning level. Order acceptance is a typical decision
problem at the interface of customer relations management (CRM) and pro-
duction management (PM). The rejection of an order may have repercussions
for future customer relations. For an arriving order the implications of accep-
tance for production must be investigated, especially in terms of availability
of production capacity. This leads to a certain estimate for the delivery date
for the order, which is communicated to the customer. Comparison with the
customer due-date demands may lead to agreement, perhaps after some iter-
ative negotiations. The result of this due-date setting process may have its
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effect on the customer relations as well. In case of acceptance, the next stage
is the actual realization of the contractual order at an operational level. The
resulting earliness/tardiness of the actual delivery date is again a main element
in terms of customer relation management. Altogether, it is clear that CRM /
PM coordination is the essence of order acceptance.

Order acceptance situations can be characterized with respect to

(i) flexibility in capacity resources

(ii) customer flexibility in order definition

(iii) predictability of order arrivals and order attribute parameters

(iv) effects of order loss

(v) uncertainty in order characteristics for production

(vi) policy constraints.

In practice the situations encountered for order acceptance may vary with
respect to each of the characteristics mentioned above. Flexibility in resources
refers to capacity extension using overwork, hiring temporary flex labour staff
or it addresses the issue of subcontracting parts of the order. The market
may be such that order definitions of quantity, price and delivery date are
essentially nonnegotiable, especially when competition is fierce; or they may
be negotiable up to some degree. Predictability of orders may be stochastic
due to customer consumption and/or replenishment patterns (say periodic),
procurement contracts or logistical advantages (full truck or container loads).
Order losses can lead to changes in arrival rates of orders and/or ordered vol-
umes. These losses can be modelled with penalizations including estimates of
future losses. Uncertainty in order characteristics is strongly dependent on the
type of production environment. Compare a make-to-stock environment with
an engineering-to-order environment. In the first case when an order comes
in, the realization phase to attend that order is already finished. In the lat-
ter case, while discussing an order for acceptance, part of the details for the
realization phase may still be unknown, such as, e.g., product routings and
capacity requirements. Order acceptance policy constraints refer to a priori
assumptions on the control structure. A policy constraint could be that un-
der the circumstances that capacity is available and the due-date can be met,
an order is always accepted. Such policy corresponds to myopic management
behavior (Wester et al., 1992). Always accepting an order when capacity is
available may bring the system in a bad situation for accepting more profitable
orders in the future. It is an interesting facet of the order acceptance policies
to take opportunity costs into account. How to find a good trade-off between
long-term opportunity costs and immediate yield in case of order acceptance
under uncertainty is a central problem in this thesis. It complicates the order
acceptance decision considerably.

Another important aspect of order acceptance decision making is the avail-
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ability of information to the decision maker. It is evident that immediate
information regarding negotiation with the customer such as an estimate of
the work content of an order, a norm for the necessary processing time, the
price and the due-date is available. However, as for information on the state of
the production facility several possibilities arise. They range from an estimate
of the overall utilization rate to a detailed estimate of the evolution in time of
the capacity profile for various workstations up to a planning horizon. More-
over the ways in which uncertainty in this state information is dealt with may
vary. Possibilities are that in some way slack is introduced or that at each time
the state evolution is probabilistic. An analogous remark holds for the infor-
mation on future orders. For estimates of opportunity costs some information
on the arrival processes of the orders is necessary. If not available yet there is
the possibility to activate a learning process to overcome the incompleteness
of the information. In practice such sort of information can be obtained by
using adaptive statistical procedures or other learning techniques. Altogether
this problem area constitutes a new and interesting field for several lines of
research. In this thesis we focus on the possible contributions of operations
research and learning techniques for the development of decision support tools
for order acceptance, from a management perspective, as described above.

1.2 Modeling Order Acceptance and learning

Our modeling approach is in line with the tradition of discrete time Markov
Decision Processes (MDP) in operations research. As usual in Markov processes
the system dynamics is described in terms of transition probabilities between a
set of possible states. At every decision moment we should decide what action
a is to be taken in the current state s. The effect of an action a is expressed
in terms of the transition probabilities from state s to s0, i.e., it is modeled
as p(s, a, s0). What one is looking for is an optimal decision making policy.
Such a policy prescribes an action a for each state s. Optimal refers to some
cost or profit criterion which is usually taken as the total expected value of
all future yields. A nice optimization property for the so-called value function
is available, and this gives rise to efficient algorithms to compute an optimal
decision making policy, such as value iteration, policy iteration or reformulation
as a Linear Programming problem, see (Puterman, 1994), (Winston, 1994) and
(Bertsekas & Tsitsiklis, 1996).

This is a very flexible way of modeling order acceptance in the given con-
text. The state definition combines information on the new arrivals of orders
and their attributes with the characteristics of the capacity profile of the pro-
duction, as mentioned in (i), (iv). The transition probabilities follow from the
order arrival process in (ii), the production progress which includes new in-
formation due to better knowledge on the detailed design of orders, and the
effect of decision making. In order to model the effect of acceptance of or-
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ders on production a priority rule for the adaptation of the capacity profile
has to be assumed, say in agreement with a first come first serve or earliest
due-date principle. In a general setting also the effect of the decision making
on capacity flexibility as in (v) can be shown in p(s, a, s0). Various sorts of
assumptions on profits of accepted orders, as well as costs of order rejection
can be accommodated in the total expected value criterion.

Nevertheless the OR approach as sketched has some shortcomings. Firstly,
though this sort of modeling is very flexible, it assumes a priori knowledge on
many parameters and if this information, say on p(s, a, s0), is incomplete, the
method has to be adapted. This can be done in a two phases procedure where
in the first step the necessary information on parameters is gathered with a
stochastic decision policy and next, once the information on parameters is suf-
ficiently accurate, the optimization of the decision policy takes place. Secondly,
the Markov decision approach suffers from what is usually referred to as the
curse of dimensionality. In a somewhat complex business environment the size
of the state space for order acceptance problems may easily be astronomically
large. So even when complete information is at hand there is a need for the
introduction of approximations. Therefore it also becomes an issue that the
learning technique is compatible with effective approximation strategies.

For both these reasons we explore in our research a new alternative for
effective process control strategies in order acceptance problems by using com-
putational intelligent techniques, particularly Reinforcement Learning (RL),
also known as Neurodynamic Programming (NP). These techniques have been
proven to be successful in distilling information from large amounts of data.
The distilled information can be used to learn about the opportunity costs or
incomplete information and to optimize the process control under study. Re-
inforcement Learning is a rather new approach that can be interpreted as a
conjunction between learning machine problems (automatic goal learning) and
Markov decision models (decision making problems). RL focuses on an agent
(a virtual decision maker) with a defined goal (optimization criterion) who
through trial and error in interaction with its environment (in our case the
CRM/PM interface ) tries to learn an optimal behavior. This means decision
making such that the criterion is optimized in the long run. Once the agent is
properly trained it constitutes a decision support tool for the order acceptance
management. There are some aspects that make RL appealing to our prob-
lem. The idea of learning without the necessity of complete model information
and the possibility that the agent learns even from delayed rewards (when the
effects of an action can be known only in the future) allow us to consider dif-
ferent degrees of uncertainty and to take into account the opportunity cost
problem in a natural way. Moreover, RL combined with the potentialities of
neural networks has been claimed to overcome the curse of dimensionality as it
appears in many complex problems of planning, optimal decision making, and
intelligent control, also in our problem setting. It is worthwhile to investigate
this claim.
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We compare decision policies found by an RL trained agent with heuristics.
It will turn out that an RL trained agent usually outperforms simple greedy
heuristics, showing that such agents learned to deal with opportunity costs in
a satisfactory way. An obvious advantage of heuristics is the more appealing
insight in their structure and performance. As for more advanced heuristics, it
can be expected that once suitable structures with sufficiently many parame-
ters are introduced they should perform also very well if properly tuned. Such
heuristics are not easily determined in complex situations. An interesting idea
is to use an RL trained agent to detect good advanced heuristics, meanwhile
interpreting the agent’s performance. Our goal is to show that this can indeed
be done in certain cases using data mining techniques. Furthermore, we em-
phasize that RL trained agents are a more flexible and robust approach with
respect to incomplete information than tuning parameters in a heuristic to fit
a specific situation.

Summarizing, the new elements for order acceptance in this thesis concern:

• introducing some new Markov decision models for OA,

• exploring how to deal with at the onset incomplete information,

• establishing how to use RL for OA,

• evaluating RL as a tool for OA decisions, so as to gain insight and find
generalizations,

• obtaining structured heuristics for OA.

For reasons of transparency we focus our research on order acceptance prob-
lems with the following structure. We consider orders that can be classified
according to a finite number of classes and the production capacity is modeled
both as a single server and as a job-shop. In the real world more complex-
ity may arise. Nevertheless the analysis of the models in this thesis provides
new insight into the problem of Order Acceptance under uncertainty and the
question of how to deal with opportunity costs.

1.3 Literature review

Relatively little attention has been paid to the order acceptance problem in
the literature. Nevertheless, some relevant literature can be found in the area
of operations management concerning the CRM/PM interface, in the area of
Operations Research (OR), in the area of accounting and in the area of Rein-
forcement Learning (RL).

In the first area some studies have been done about the degree of information
required to deal with the coordination mechanism between the order acceptance



1.3. Literature review 7

function and the scheduling function. Three policies were compared by Wester,
Wijngaard and Zijm (Wester et al., 1992) in a single machine make-to-order
environment. (1) The monolithic policy accepts orders based on a detailed
schedule which is built upon an order arrival. (2) The hierarchical and (3)
myopic policies take their decisions based on the total workload of all accepted
orders. The hierarchical policy makes a detailed schedule with the accepted
orders, whereas the myopic policy uses some simpler dispatching rules. The
experimental results show that in situations with large setup times and tight
due-dates the monolithic approach performs better, probably due to a phenom-
enon of implicit selective acceptance. Moreover there are no real differences in
performance between the hierarchical and myopic policies. The hierarchical
and integrated approaches were also compared by Ten Kate (ten Kate, 1995)
in process flow industries. He explains why due to uncertainty and complexity
of production, hierarchical structures are more widely used. The experimental
results show that only for tight situations (short lead-times, high utilization
rate) the integrated approach outperforms the hierarchical approach although
still in such situations the performance is often bad for both approaches. The
problem of accepting orders together with capacity loading decisions is studied
in multipurpose batch process industries by Raaymakers (Raaymakers, 1999).
Besides the traditional workload and scheduling policies she also considers a
makespan estimation policy which uses some aggregate information about the
current job mix and the total workload. From the empirical results she obtained
that the scheduling policy always realizes a better or equally good service level
and capacity utilization performance than the other two policies, however it
is very time consuming. Furthermore, the makespan estimation policy realizes
higher capacity utilization than the workload policy, particularly in situations
with high demand and product variety, so it is a good alternative when detailed
information can be difficult to obtain, or when computation time is scarce.

Lead-time flexibility is studied together with order acceptance and schedul-
ing in (Charnsirisakskul et al., 2004). Simultaneous order acceptance and
scheduling decisions should be taken in a single-machine deterministic produc-
tion system where each customer order has a preferred and latest acceptable
due-date. Tardiness with respect to the latest due-date is not allowed, and
there are tardiness penalties for orders that are not completed before the pre-
ferred due-date. The problem is modelled as a mixed integer linear program.
The numerical experiments give insight into the benefits in different demand
and production environments of three types of flexibility: lead-time, partial
fulfillment, and inventory flexibility. The results rank the three types of flexi-
bility as inventory, lead-time, and partial fulfillment in decreasing order of their
usefulness.

Uncertainty in order acceptance has started to receive attention just re-
cently. Ivanescu (Ivanescu, 2004) continued Raaymakers’ work but under un-
certainty, including stochastic order arrivals and processing times. She also
considers estimation policies which use aggregate information and compares
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them to the scheduling policy, now with a fixed slack to account for the stochas-
tic processing times. First with an α− regression policy (makespan estimation)
she aims to obtain an α service level (the probability of on-time order set com-
pletion). The scheduling policy outperforms the regression policy in scenarios
with low order mix variety (higher capacity utilization and closer to the target
service level). However, in scenarios with high order mix variety the regression
policy gets closer to the target service level than the scheduling policy. There-
fore in a hybrid policy she combines detailed scheduling and regression models
for the slack estimation. This hybrid policy keeps the benefits of the schedul-
ing policy on capacity utilization but obtains delivery performance closer to
the target.

In (Ebben et al., 2005) the authors compared four workload based policies
varying from rules based on aggregate information to detailed scheduling meth-
ods in a make-to-order job shop with stochastic processing times. To account
for inaccuracy in methods and uncertainty, a safety factor is explored with the
capacity utilization. (1) The Aggregate Resource Loading (ARL) method looks
at aggregate information: an order is accepted when the required capacity is
not greater than the total available capacity within the time window for that
order. (2) In the Resource Loading per Resource (RLR) method, an order is ac-
cepted when for each job of the order capacity is available on the corresponding
resource within the time window of the job. (3) The Earliest due-date based
order acceptance (EDD) uses the EDD dispatching rule to construct a detailed
schedule every time an order arrives. Capacity assignment to time periods is
not fixed since orders are rescheduled upon acceptance. (4) The Branch and
Price Resource Loading (BPRL) method uses a truncated version of an exact
approach for solving the preemptive resource loading problem. Their results
show that the sophisticated approaches significantly outperform the straight-
forward approaches in case of little slack.

Altogether this line of work is oriented mainly towards due-date perfor-
mance and capacity utilization, not so much towards costs and profits (except
(Charnsirisakskul et al., 2004)), certainly not towards opportunity costs.

In the operations research literature the idea of opportunity costs in order
acceptance problems is recognized, but not worked out in as full generality as
we propose. This problem arises naturally in the context of reservation systems
for car rentals, room reservations in hotels or tank capacity rentals. Usually
such problems are discussed under interval scheduling (Pinedo & Chao, 1999),
but the problem is then deterministic. Garbe (Garbe, 1996) made an inter-
esting deterministic description of some online1 order acceptance algorithms.
Although some algorithms are given, the results are mainly theoretical and the
theorems are concerned with a worst case analysis and for a restricted set of
problems.

1An online algorithm has to decide whether or not to accept an arriving order immediately
upon its start time without any further information about possible successors.
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An important step in considering opportunity costs is through the use of
dynamic programming models. A single server system in continuous time in
which opportunity costs play a role is studied by Nawijn (Nawijn, 1985). A
decision has to be made between starting a new service for an arriving order or
rejecting an arriving order depending on its expected processing time. Orders
that arrive while the server is busy, are lost. He proves that there exists an
optimal control policy that maximizes the expected average number of cus-
tomers per unit of time. For the case of Poisson arrivals he obtains an explicit
formulation of the optimal policy which in general might be difficult to obtain.
An early survey on the application of MDP for control in queueing networks
is presented in (Stidham & Weber, 1993). In this survey some references are
presented that obtain the structure of optimal policies for admission control
and routing in simple networks. (Wijngaard & Miltenburg, 1997) studies the
use of short term capacity flexibility for incidental sales opportunities in a sin-
gle server. Uncertainty is considered on the arrivals of the sales opportunities.
A dynamic programming model allows to take into account the uncertainty
and the opportunity costs. The optimal policy (maximizing average reward)
is partially obtained, a sales opportunity is accepted if its reward per unit of
capacity is greater than the average reward per unit of capacity. Although it
is not an operational criterion since the average reward is not known, and it
is difficult to estimate, it shows that the acceptance of a specific sales oppor-
tunity only depends on its reward per unit of capacity. A more recent work is
(Brouns & van der Wal, 2000) which incorporates as a new feature termination
control in an M/EN/1 queue (Poisson arrivals and Erlang service times). Ter-
mination control consists of deciding whether to quit processing jobs in service.
The objective is to maximize the expected discounted profit over a time hori-
zon. Under certain regularity conditions on the shape of the reward function,
they obtain that there exist optimal threshold policies, e.g. "quit serving if
there is too much work waiting and if the job under service has already passed
a sufficient number of phases", so there are still unknown parameters to be
determined in order to have the exact optimal policies.

In the area of management accounting, opportunity costs related to order
acceptance have received some more attention since the eighties, though it
has been recognized that opportunity costs are hard to determine (Miller &
Buckman, 1987; Gietzmann & Ostaszewski, 1996). In (Gietzmann & Mona-
han, 1996) an MDP model of a simple stochastic manufacturing process (single
server, two products) is modelled in order to assess two heuristic costing rules:
direct and absorption costing based acceptance rules. The direct costing (DC)
rule accepts an order if its contribution margin exceeds the expected holding
costs associated with the order. This rule ignores opportunity costs. The ab-
sorption costing (AC) rule seeks to account for opportunity costs and accepts
an order if its contribution margin exceeds the sum of its expected holding
costs and the allocated costs of providing the capacity. The optimal policy is
only partially obtained for some states, this allows to study the behavior of
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the two heuristics and to reach the conclusion that none of these two heuristic
rules is better than the other for all parameters of the problem. The MDP
model allows to obtain an "open acceptance" condition on the parameters of
the problem under which the AC rule is better than the DC rule. Opportunity
costs are analyzed as part of relevant costs for order acceptance decisions by
Wouters in (Wouters, 1997). Relevant costs for order decisions are considered
to be those avoidable by rejecting an order (incremental costs and opportu-
nity costs). General guidelines on the necessary information from production
planning and control function are given to calculate relevant costs. However
alternatives to consider opportunity costs are only related to planned capacity,
not to future situations. Wouters recognizes the difficulties to calculate relevant
costs under uncertainty and gives some suggestions to assess the reliability of
the information under uncertainty.

In this thesis we consider a modeling approach for the OA problem under
uncertainty. We investigate more general problem settings. In particular we
consider more general order attributes and service capacity and different de-
grees of uncertainty. Generally in the literature a model of the production
process is considered to be known beforehand. The problem is that in practice
most of the time such a model is hard to find. Sometimes even an approximate
model of the process is not easily obtained due to incomplete information. We
consider Reinforcement Learning, an approach from Artificial Intelligence, as
a remedy.

Artificial Intelligence tools have been widely used in several applications, but
hardly for OA problems. However, Wang (Wang, 1994) proposed a multicriteria
OA decision tool in which the OA decision rule is based on a prioritization
given by a pairwise comparison using a neural network based preference model.
Orders are accepted following the priority ranking if capacity is available, but
opportunity costs are not an explicit issue there.

Reinforcement Learning (RL) is a simulation based approach which ba-
sically consists of agent learning to achieve goals while interacting with the
environment. RL has its roots in the 1950s, in the early works on Artificial
Intelligence (specifically learning by trial and error), and in the field of Optimal
Control (specifically dynamic programming), see (Sutton & Barto, 1998) and
(Bertsekas & Tsitsiklis, 1996). These two lines came together during the 1980s
to produce the modern field of RL.

RL has been successfully applied in various domains. It has been used in
playing games: checkers player (Samuel, 1959), (Samuel, 1967), backgammon
player (Tesauro, 1994), in some logistic problems like for example: elevator con-
trol (Crites & Barto, 1996), job-shop scheduling (Zhang & Dietterich, 1995),
(Riedmiller & Riedmiller, 1999), routing (Boyan & Littman, 1994) and resource
allocation (Singh & Bertsekas, 1997) in communication networks. In all these
problems the dynamic model was known beforehand, but the size of the prob-
lems made them intractable for traditional dynamic programming methods.
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The system behavior is simulated, and its performance is improved by means
of iterative reinforcement.

RL has also been used in admission control and routing in communication
networks (Carlstrom, 2000). Admission control is the known name for order
acceptance problems in queueing systems (Puterman, 1994). Admission control
in communication networks is to accept or reject an arriving call request. Rout-
ing is the set of actions taken to set up a call between two nodes along some
path through a network (Carlstrom, 2000). Only unicast routing is considered
(one sender, one receiver). For each arriving call if the set of feasible routes
is empty the call is rejected. Otherwise one of the routes should be chosen or
the call could be rejected in order to reserve resources (e.g. bandwidth) for
more profitable future calls. The results present several algorithms based on
RL which improve the way a network is shared compared to other conventional
routing and admission control algorithms.

The study of order acceptance policies in a production or service environ-
ment using RL started recently. Snoek studied a neuro-genetic architecture
using RL that aims to optimize OA and scheduling policies in a job-shop en-
vironment, (Snoek, 2000). This approach outperformed two simple heuristic
policies. In a different study (Mainegra-Hing et al., 2001), an RL policy is
shown to converge to the optimal policy for a simple OA case with a single
server with at most one job in execution, and it is further discussed here in
Chapter 3.

In this thesis we also consider more general cases with several independent
order types that compete for capacity on a shared resource or in a multiresource
environment. Hence the scarce capacity of the resources should be allocated to
a set of concurrent orders planned over a given planning horizon. Further, we
allow for stochastic perturbations during job execution resulting in a higher or
lower capacity realization than anticipated. Finally we consider Order Accep-
tance together with other kinds of decisions in an integrated planning approach.
The idea is to show how RL may also be useful in a more general and realistic
decision making process. Here we consider three possible cases. The first one
includes a due-date and price negotiation with the customer, the second one
considers choosing a routing in a multiresource shop, and the last one considers
outsourcing decisions that may partially outsource an order in service.

It is not very difficult to define reasonably simple heuristics for OA problems
(Pinedo & Chao, 1999; Raaymakers, 1999; Mainegra-Hing et al., 2001; Ebben
et al., 2005). In this thesis a more general setting for a class of heuristics is
presented, which allows for a wealth of advanced heuristics taking system state
characteristics into account. This approach to more general heuristics for OA
is not addressed in literature to the best of our knowledge.
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1.4 An example

To give a first impression of the underlying ideas of this thesis we present here
an example. Consider a single resource manufacturing system with one type of
resource where arrivals of orders take place as events in continuous time. This
kind of problem is thoroughly explained in Chapter 4.

In terms of the characterization (i)-(vi) given above we assume the following:

(i) Capacity is considered as a unique resource. Once accepted, orders are
loaded over a planning horizon of 6 stages (H = 6). There is a maximum
regular capacity of 4 units at each stage of the planning horizon (Cmax = 4).
We assume that for each order type the due-time of delivery is at most 6, the
size of the planning horizon. The due-time of an order is relative to the stages
in the planning horizon and the arrival moment of the order. For example
suppose each stage spans one hour and in a situation like in Figure 1.1 at stage
1 of the planning horizon we are at time 7.00 hours and there is an order in
the system with the due-date 11.00 which arrived before 7.00 then its due-time
is 4, which indicates that the order should be planned not after stage 4 of the
planning horizon.
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Figure 1.1: Capacity utilization in a planning horizon with 6 stages, 4 hours each

Here we consider a capacity perturbation that only occurs at the first stage
of the planning horizon. This perturbation may be caused by an order being
finished earlier or later than scheduled or by a machine problem. We consider in
this example a discrete uniform distribution that takes values (−1, 0, 1). When
the maximum regular capacity is being used at the first stage of the planning
horizon, and a capacity perturbation occurs that implies using more capacity,
it is possible to use an extra unit of non-regular capacity at a cost of 2 (η = 2).
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(ii)-(iii) Order definitions are based on ten different types of orders where
type i has a due-time ti, processing time wi and it generates an immediate
reward upon acceptance ri. Arrivals of orders take place according to a Poisson
process, and the probability of arrival is order type dependent, type i has an
arrival rate λi, see Table 1.1.

(iv) Rejection of an order does not affect any future arrivals.

(v) Order processing requires an order type dependent processing time wi

from the single resource, the actual realization of an order may differ from this
value causing a possible capacity perturbation as explained in (i).

(vi) Although arrivals of orders take place continuously, they are only eval-
uated at discrete equidistant time moments, so we consider several arrivals in
each discrete time unit (batch arrivals). At every discrete point in time the de-
cision maker should choose a set of orders from the arrival batch, if there is no
available capacity for an order, the only option is rejection for that order. The
order acceptance decision is supported by loading procedures. Specifically, to
allocate capacity here we use backward loading and least shift back procedures,
see Algorithms 4.1 and 4.2 in Chapter 4.

The goal is to decide on the acceptance of arrived orders in order to maxi-
mize the total expected average reward per unit of time.

The data of the ten types of orders are provided in Table 1.1. The table
also shows a column with the reward per processing time r/w. Violation of
due-times is not allowed.

type
of order

t w r r/w λ

1 6 4 4 1 3
2 2 7 7 1 2
3 3 4 4 1 1 H = 6
4 6 12 24 2 2
5 6 10 20 2 3 Cmax = 4
6 4 4 8 2 1
7 3 10 30 3 1/6 η = 2
8 2 4 16 4 0.1
9 1 3 15 5 0.1
10 1 2 12 6 0.05

Table 1.1: Data for an example with 10 different types of orders in a single resource
with multiple arrivals

The case could be that the first six types of orders, which pay off a smaller
reward per unit of capacity upon acceptance (1 ≤ r/w ≤ 2), are from the usual
costumers, and they are also the more frequent jobs. Suppose a market study
shows that there are four more profitable potential clients (3 ≤ r/w ≤ 6) but



14 Chapter 1. Introduction

with smaller arrival frequency. The question could be which rule to follow in
order to take advantage of the opportunities that the more profitable costumers
could offer. If these more profitable costumers would arrive more often one can
think of rejecting some of the usual costumers.

A simulation study of this problem shows different average rewards for dif-
ferent rules similar to some rules previously discussed in Section 1.3. First we
study the scenario with the six more frequent type of orders and then with all
the ten types. We consider heuristics similar to the direct and the absorption
costing rules studied by Gietzmann and Monhanan (Gietzmann & Monahan,
1996) as mentioned in Section 1.3. Similar to the direct costing rule we consider
a greedy rule that accepts all orders as long as capacity allows it. Similar to
the absorption costing rule we consider rules that accept orders only if their
reward per required capacity is over a certain threshold, we call these rules
OrderQuality(b) where b is the threshold value. Note that this new rule takes
opportunity costs into account: even if capacity is available an order with re-
ward per required capacity under b is rejected.

Table 1.2 shows some results of this study. O6Greedy and O10Greedy are
the greedy rules for the problem with six orders and the problem with the ten
orders respectively. O6OrderQuality(2) and O10OrderQuality(2) were the best
of the OrderQuality rules.

scenario Average reward
O6greedy 4.082
O6OrderQuality(2) 7.97
O10greedy 4.29
O10OrderQuality(2) 8.1

Table 1.2: Performance of some heuristics for the example case

The results show that the rules considering opportunity cost in both prob-
lems lead to better results: rules O6OrderQuality(2) and O10OrderQuality(2)
that reject orders with reward per required capacity of one unit (types of or-
ders 1, 2 and 3). Also the problem with 10 types of jobs achieves much better
results than the problem with only six.

One question now is whether it is possible to find better rules. The rules
above do not take into account arrival frequency of the orders or capacity
perturbations for example.

Another question is how to define good rules in case we do not have the
complete information on the characteristics of the orders and on the capacity
profile?

Using the MDP modeling and the Reinforcement Learning approaches as we
propose here (Chapter 2 ) we obtained a learning agent (decision maker) that
improves the previous results obtaining an average reward of 8.62 in the case
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of 10 types of jobs. We use a simulation based approach where the agent learns
to take decisions while interacting with a simulated environment. This agent
learns to take decisions based on the composition of the batch of arrivals (i.e.,
amount of each type of orders), some information on the status of the capacity
profile, and some delayed signal evaluating its previous decision. The details
of this model and the solutions we propose are discussed in Chapter 4. Here
we want to mention that in order to get an effective agent design (see research
question 1) we make a non-trivial step by introducing an iterative procedure
that allows us to work with a strongly reduced action space. Moreover we
remark that parameter tuning is a non-trivial matter, that requires a lot of
trial and error before it works satisfactorily (see research question 2).

Since the number of situations that the agent must learn is quite large (in
this case approximately 235), it is difficult to interpret what the agent has
exactly learnt. As for average reward, the obtained decision rule - based on
well tuned Reinforcement Learning - compares well with respect to the simple
heuristics (see research question 3). However it has the disadvantage that it
works like a black box for a human decision maker. It would be nice if we
could open the black box up to some degree (see research question 4). Using
simple data mining techniques we find the following rules that approximate the
agent’s behavior:

1. If the total used capacity over the planning horizon is in [0,7] then orders
should be chosen according to the following priority sequence for order
types (10,9,8,6,5,4). Other orders should be rejected

2. If the total used capacity over the planning horizon is in [8,10] then orders
should be chosen according to the following priority sequence for order
types (10,9,8,5,6,4). Other orders should be rejected

3. If the total used capacity over the planning horizon is in [11,22] then
orders should be chosen according to the following priority sequence for
order types (10,9,8). Other orders should be rejected

Note that using these rules we never accept orders of type 1, 2 and 3.
Orders of type 4, 5 and 6 are only accepted when the total used capacity over
the planning horizon is not too high and only when there are no orders of type
10, 9 and 8. This new heuristic obtained an average reward of 9.02 improving
all the previous results. A general framework for generating new heuristic rules
by extracting the knowledge in RL-agents is presented in Chapter 4.

The learning process for the agent is governed by a set of learning parame-
ters. Based on our experimental results, we define and use a general method-
ology for the automatic tuning of these parameters. For details we refer to
Chapter 5.
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1.5 Outline of the thesis

The remainder of this thesis is organized as follows. In Chapter 2 we present the
basic theory of Reinforcement Learning with the underlying theory of Markov
Decision problems and the main learning methods we deal with in this the-
sis. We end the chapter with a discussion on the general framework for the
application of Reinforcement Learning in Order Acceptance.

To get initial insight into various methods of RL we study in Chapter 3 a
simple OA problem. We consider systems with a single server without a queu-
ing facility, and a finite number of types of orders with stochastic dependent
arrivals and deterministic processing times. This simple OA problem can be
solved exactly to optimality. So we can use an optimal solution to compare
its structure with the results from several RL algorithms. Thus this prototype
problem allows us to get a better understanding of these RL methods. This
chapter is part of a published report, (Mainegra-Hing et al., 2001). In Chap-
ters 4, 5 and 6 we study more complex OA problems and the application of a
specific RL method.

Chapter 4 is dedicated to OA on a single resource with batch arrivals of
stochastically independent orders. Orders are loaded over a planning horizon
at discrete equidistant time moments. Stochastic capacity perturbations are
considered here. We also discuss a general class of heuristics for OA that is
used to compare with the RL results. Moreover we set up a general framework
to interpret the results of RL by extracting heuristic rules from the knowledge
learned by the RL-agent. The general class of heuristics and the framework are
used throughout the remaining chapters. An earlier and short version of this
chapter is published, (Mainegra-Hing et al., 2002). Part of the latest version
presented here has been accepted for publication; specificaly the problem de-
scription (Section 4.1), the model (Section 4.2), the general class of heuristics
(Section 4.3) and six cases of experimental results including the last two cases
presented here (Section 4.5), (Mainegra-Hing et al., ).

Chapter 5 extends the model from Chapter 4 by discussing OA in a multire-
source shop where the order types define a fixed route through a job shop. The
question is whether the RL approach will also work in this more complicated
setting. We propose a methodology for tuning the learning parameters of the
RL based on experimental experience. To handle the complexity of the problem
we use here the concept of Partially Observable Markov Decision problems. In
particular we define useful features to facilitate the learning process.

In Chapter 6 we consider Reinforcement Learning supporting Order Accep-
tance together with other kinds of decisions in an integrated planning approach.
The idea is to show how RL may also be useful in a more general and realis-
tic decision making process. Here we consider three possible cases. The first
one considers choosing a routing in a multiresource shop, the second one con-
siders outsourcing decisions, and the last one includes a due-date and price
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negotiation with the customer.

Finally, in Chapter 7 we present the conclusions and propose topics for
further research.
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Chapter 2

Reinforcement Learning

Reinforcement Learning studies an intelligent system (agent) that learns to
achieve a goal through interaction with its environment. The idea of learning
from interaction started in the early days of Artificial Intelligence but it was not
thoroughly explored until the last 20 years. During that period it has grown
into one of the most active areas in machine learning. In previous machine
intelligence paradigms such as symbolic processing or supervised learning the
intelligent system is supposed to receive some knowledge information before-
hand, process such information and use it as its knowledge base. Unfortunately
there are many situations where we do not have this a priori information.

In the paradigm of Reinforcement Learning, the agent is supposed to gather
such information sequentially. At the same time it is learning from the gath-
ered information. The collection of information and the learning process occur
simultaneously by the interaction between the agent and the subject that is to
be learned. The information which the agent receives does not need to be in
the form of complete rules (the well known IF_THEN rules), as in a symbolic
processing paradigm, or like perfect match pairs examples (situations with cor-
rect answers), as in supervised learning. The information can be just a simple
signal (reward leading to reinforcement) related to the latest interactions. In-
stead of starting from given examples of desired behavior, the learning agent
must discover by trial and error how to behave in order to get the best reward.

An RL-system has mainly two components: the Environment where the
process to be studied takes place, and an agent1 (RL-agent) who should be
able to learn to control the process. The Environment in general, is assumed
to be a semi-Markov decision process (SMDP). In Section 2.1 we introduce the
theory of SMDP. In Section 2.2 we present the general RL-agent we will be
working with in this thesis.

1Although we focus here on a single agent system, multiagent systems in which a group of
agents communicate and cooperate, have also been considered in the context of RL-systems.
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In this context we may situate Order Acceptance problems with incomplete
information by considering the decision maker as an RL-agent who has to
act in an unknown environment where orders arrive and may be accepted or
rejected. We consider several degrees of incomplete information through the
different models in the next chapters. Using SMDP models we simulate the
dynamics of the environment. Then through interaction, with the simulated
environment, the RL-agent who does not know about such dynamics, should
learn the optimal acceptance behaviour. In Section 2.3 we discuss the general
framework for the application of Reinforcement Learning in Order Acceptance.

2.1 The environment: A Semi-Markov Decision
Process

A semi-Markov decision process (SMDP) is a model for sequential decision
making in dynamic systems under uncertainty. A semi-Markov decision process
consists of the following elements:

• The state space characterizing the system: S

• The action space defining the decisions that can be taken: A

• The decision epochs, i.e., the moments in time at which decisions have to
be taken. Decision epochs do not necessarily occur at equidistant points
in time. When the decision epochs are equidistant in time, the process
is called a Markov decision process (MDP). In general the time d(s, a) to
the next decision epoch depends on the current state s and the action a
taken at the current decision epoch.

• The transition probabilities describing the system dynamics

p(s, a, s0) is the probability that when the action a is chosen in the
actual state s, the next state in the next decision epoch, is s0.

• The immediate reward function rew(s, a, s0), i.e., the reward received
when in state s action a is taken and the next state is s0.

In this thesis we consider that an explicit model for an SMDP is the tuple
{S,A, d, p, rew} characterizing the process. The term "Markov" is used be-
cause the dynamics of the system has the Markov property, i.e., the transition
probabilities and the reward function only depend on the current state and the
action taken in that state. We consider here finite SMDP, i.e., the state and
action space are finite.

The semi-Markov decision problem consists of finding a prescriptive rule
to choose an action for each state at every decision epoch such that a certain
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criterion is optimized. Such a prescriptive rule constitutes a policy. From the
theory of finite SMDP it follows that there exists an optimal deterministic
decision policy, i.e., a mapping from the state space to the action space π :
S → A, see (Puterman, 1994).

The optimality criterion defines a performance measure of the system. The
most common optimality criteria are:

• Total expected reward for a finite planning horizon.

• Total expected discounted reward over an infinite planning horizon.

• Average expected reward per unit of time.

In this thesis we focus on an infinite horizon with total expected discounted
reward. For the purpose of our research it is not relevant whether we consider a
finite or an infinite horizon. However an infinite horizon makes our simulation
system simpler. One does not need to consider horizon length or a set of ter-
minal states. Furthermore in infinite horizon problems, unlike in finite horizon
problems, one can look for an optimal policy in the set of stationary policies,
i.e., independent of the time moment.

The total expected discounted reward has the most complete and general
theory, with the fewest requirements, particularly it is not necessary to analyze
the chain structure of the Markov chains generated by stationary policies as
in the average criterion (Puterman, 1994). A discount factor 0 < γ < 1 cor-
responds to the idea that rewards are less attractive in the far future. Given
a policy π, the state-value function V π is defined for each state s as the total
expected discounted reward starting in state s and following policy π:

V π(s) = Eπ

( ∞X
k=0

γTkrk|s0 = s

)
(2.1)

=
X
s0

p(s, π(s), s0)
h
rew(s, π(s), s0) + γd(s,π(s))V π(s0)

i
,

= R(s, π(s)) + γd(s,π(s))
X
s0

p(s, π(s), s0)V π(s0) (2.2)

where rk is the immediate reward at the decision epoch k and Tk is the elapsed
time between t0 = 0 and the k − th future decision epoch. R(s, π(s)) is the
expected immediate reward.

The objective is to find an optimal policy π∗ such that V π∗(s) ≥ V π(s) ∀s ∈
S, ∀π. This optimal policy can be found by any of the traditional methods from
Probabilistic Dynamic Programming in the case of complete information about
the model. For more on these methods see (Winston, 1994) and (Puterman,
1994). Linear programming, value iteration and policy iteration methods are
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the most widely used, and they are basically based on the Bellman Equation
(2.1) where all the details about the model are assumed to be known. The
value for the optimal policy V ∗(s) satisfies the following relation:

V ∗(s) = max
a

"
R(s, a) + γd(s,a)

X
s0

p(s, a, s0)V ∗(s0)

#
. (2.3)

So far we presented the classic SMDP setting. Traditional solution methods
for this problem require full knowledge about the model parameters (i.e.,
transition probabilities, reward function, etc.). However, from previous work
of the Artificial Intelligence community on learning optimal decision policies a
slightly different concept, the action-value function Qπ appeared to be more
advantageous (Watkins & Dayan, 1992). This function is defined for each state-
action pair (s, a) as the total expected discounted reward starting in state s ,
taking action a and thereafter following policy π:

Qπ(s, a) = Eπ

( ∞X
k=0

γTkrk|s0 = s, a0 = a

)
(2.4)

= R(s, a) + γd(s,a)
X
s0

p(s, a, s0)V π(s0).

In terms of this action-value function under an optimal policy π∗ the opti-
mality relation is given by

Q∗(s, a) = rew(s, a) + γd(s,a)
X
s0

p(s, a, s0)max
a0

Q∗(s0, a0). (2.5)

The importance of the action-value function Q∗ (s, a) is to remedy the in-
sufficiency of the state-value function V ∗(s) to reconstruct the optimal policy
purely from its values. Note from Equations (2.3) and (2.4) that

V ∗(s) = max
a

Q∗(s, a) (2.6)

An optimal policy follows directly from the optimal action-value function through:

π∗(s) = argmax
a

Q∗(s, a). (2.7)

Note that in this relation there is no reference to other information than
Q∗ (s, a) itself. This relation can easily be reformulated in terms of V ∗(s) as

π∗(s) = argmax
a
{R(s, a) + γd(s,a)

X
s0

p(s, a, s0)V ∗(s0)},
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but to use this formula we need a lot of model information, since all model
parameters enter in the formula besides the value function. In problems with
incomplete information this is a disadvantage for formulating transparent learn-
ing algorithms. Therefore, in this thesis we focus on learning the function
Q∗ (s, a). In Section 2.2 we discuss how an RL-agent learns to approximate
the action-value function without using an explicit model formulation. Once
a good approximation is found the corresponding policy follows directly from
the Equation (2.7).

2.2 The agent

RL can be viewed as an incremental method for solving an SMDP without
knowing a priori the dynamics of the problem but - instead - by receiving
information over time about the states and the reactions (rewards) to the chosen
actions. An RL-system has mainly two components, an Agent (RL-agent)
and its Environment. The Environment is assumed to be in general a Semi-
Markov decision process where the actions are controlled by an Agent. It is
characterized by states, rewards and transitions as introduced in Section 2.1.

The RL-agent is characterized by:

• goal : the agent’s optimality criterion, which should be optimized through
its behavior.

• knowledge: processed and saved information obtained by communication
with the environment that can be used by the agent in order to decide
on its behavior;

• behavior : the way the agent chooses to interact with its environment
in order to achieve its goal. It is also called the agent’s policy and it
matches the perceived state from the environment and the taken action
by the agent;

• learning method : the mechanism by which the agent updates its knowl-
edge.

Here we present the general structure of the RL-agent we will be working
with in this thesis.

2.2.1 Agent-Environment

Figure 2.1 summarizes the communication between the RL-agent and its envi-
ronment. At each decision moment the agent (1) observes the current state of
the environment and (2) performs an action selected according to its decision
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Figure 2.1: Agent-Environment Interaction

policy. As a result of the (3) received action in the environment (4) a transition
to a next state takes place and a reinforcement, or reward signal is generated
(5). The reward signal and the new state are received by the agent and (6) may
be used through the agent’s learning method in order to update its knowledge
about the environment, and consequently it can update its behaviour. Rewards
and state transition functions may in general be stochastic, and the underlying
probability distributions are assumed not to be known to the agent.

Nowadays the RL subject comprises a wide range of problems and related
algorithms. As for the problems there are two fundamental categories: the
RL evaluation (prediction) and the RL control problems. The first problem
concerns the evaluation of a given policy, that means having the agent following
a fixed policy to determine a certain performance measure of such a policy (e.g.,
the total expected discounted reward). The control problem is a more difficult
one. It is to find an optimal policy that maximizes a certain performance
measure. Our focus here is on RL control using Q-learning (QL) methods
that try to learn the optimal action value function Q (Equation (2.5)) as a
way to obtain an optimal policy. For semi-Markov decision processes this is
a quite natural approach in our opinion (these are also the most developed
and used methods) but we should mention that it is not strictly necessary
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to do Q-learning in order to solve the RL control problem. Methods that
search directly in the policy space (genetic algorithms, genetic programming,
simulated annealing) have also been used. For a good introduction on RL see
(Sutton & Barto, 1998).

In the following subsections we present the agent’s structure we will be
working with throughout this thesis.

2.2.2 Goal

The agent’s goal is to maximize the reward received over time. For the rea-
sons explained before (Section 2.1) we consider here as optimality criterion the
expected total discounted reward.

2.2.3 Knowledge representation

Here we consider the RL-agent’s knowledge as an estimation of the optimal
action-value function Q as in Equation (2.5). The agent can initialize this
estimation arbitrarily or by taking into account some prior knowledge. This
estimation is updated during the learning process as we explain in Section 2.2.5.
The classical representation for the estimation of the action-value function is a
backup table representation. In this case for each state-action pair (s, a) there
is an entry in the table which is the corresponding approximated action value
Q(s, a). In the simple OA problem we present in Chapter 3 we use this type of
knowledge representation. However, this way of representing knowledge limits
the size and complexity of the solvable problems. It is difficult to represent the
estimated Q-values for problems with an extremely large or even continuous
state space. Hence function approximations could be used that may generalize
and interpolate for states and actions never seen before. Some function approx-
imations include decision trees, artificial neural networks, and various kinds of
multivariate regression, see (Sutton & Barto, 1998). An Artificial Neural Net-
work (ANN) is an example of such a function approximation, with a massively
parallel distributed structure. Such structure and the capability to generalize
make it possible for ANN to solve complex problems. For ANN there is a vast
literature, we specifically refer to (Haykin, 1999). Many of the most successful
applications of RL use ANN to represent the learning knowledge, see (Tesauro,
1994; Boyan & Littman, 1994; Zhang & Dietterich, 1995; Singh & Bertsekas,
1997).

An ANN is made up of simple processing units typically known as neurons.
The most widely used ANNs are of type multilayer perceptron (MLP) where
neurons are arranged in layers. For reasons of simplicity we will focus here on
multilayer perceptrons with one hidden layer and a single output, which will
be referred to as I − θ− 1 perceptrons where I and θ are the sizes of the input
and the hidden layer, the 1 is for the single output. This notation is taken from
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Figure 2.2: An I − θ − 1 perceptron for representing the Q-values, where I and θ
are the sizes of the input and the hidden layer

Haykin (Haykin, 1999). See Figure 2.2 as an example of using an I − θ − 1
perceptron for representing the Q-values.

The inputs of the I − θ − 1 perceptron are features corresponding to a
specific codification for the state s and an action a for that state. The output
is a parametric approximation to the corresponding Q-value Q(s, a).

Each input is connected to each neuron in the hidden layer, and each hidden
neuron is connected to the output neuron. All these connections are weighted.
It is also a common practice to apply an external bias to each neuron expanding
the range of functions that the ANN may effectively approximate.

Thus an ANN representing the action-value function Q is parametrized by
the weights set w. The set w is defined as w = {W, b,Wo, bo}, where W
is an Ixθ matrix of the weights from the input layer to the hidden layer, b
is a θ−dimensional vector of all the biases to each hidden neuron, W0 is a
θ-dimensional vector of the weights from each hidden neuron to the output
neuron, and b0 is the bias of the output neuron. Each neuron has an associated
transfer function which defines the neuron’s output as a function of its input.

As transfer functions we use at each hidden neuron the hyperbolic tangent
function which defines the output of each neuron given an input x as follows:

tanh(x) =
ex − e−x

ex + e−x
.

The input xj to the hidden neuron j is xj = bj +
IP
i=1

Inputi ∗Wij .

For the output neuron we use a linear transfer function. This design is
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known to work as a universal function approximation such that given a sufficient
number of hidden neurons and by properly adjusting the weights, it could
approximate any measurable function with arbitrary accuracy. The output of
such an I − θ − 1 perceptron for a given Input (1xI dimensional) and a set of
weights w is given by

Q(Input) = tanh(Input ∗W + b) ∗Wo + bo.

The knowledge of an agent using such an ANN is in the set w. Updating the
knowledge consists of adjusting the weights to obtain an appropriate approxi-
mation to the optimal Q values. To update the weights we use the traditional
backpropagation for a given training pair (Input, target), see (Haykin, 1999).
The training pair is obtained at each agent-environment iteration, see (Sutton
& Barto, 1998), (Bertsekas & Tsitsiklis, 1996). We explain this in more detail
in Section 2.2.5 where we present the learning method we use in this thesis.
Next, in Section 2.2.4 we explain how the agent behaves based on its knowledge.

In the application of multilayer perceptrons matters like codification of the
inputs and number of hidden nodes are to be defined that may influence the
success of the application. They determine the size of the ANN as the number
of weights which is (I + 2)θ+ 1 for the I − θ− 1 perceptron. We discuss these
issues in the following chapters during the presentation of our computational
experiments.

2.2.4 Behavior

The behavior defines how the agent chooses the actions (e.g. greedy policy2, ex-
ploratory policy3). The ideal action in a given state is the one which maximizes
the action-value function, the greedy action. However if we always choose the
greedy action based on the actual knowledge, many relevant state-action pairs
may never be visited due to the inaccurate estimation of the action-value func-
tion. Particularly at the beginning of the learning process we need to explore
as much as possible.

Efficient exploration is fundamental for learning. Too much exploration can
cause nearly random behavior and too little can lead to non-optimal solutions.
This is known as the exploitation-exploration trade-off. Exploitation deals with
the use of the available knowledge for example by choosing the greedy actions.
Exploration increases experience for example by choosing actions at random.
Two well known exploration strategies are the following:

−greedy exploration: With probability 1- one chooses a greedy action
2A greedy policy is one in which all the actions are greedy. An action a is greedy if

a = argmax
a0

Q(s, a0)
3An exploratory policy can choose actions at random which can be useful when there is

not enough knowledge, for example at the beginning of the learning process.
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with respect to the current estimate of the action-value function and with
probability a random action. The parameter should decrease during the
learning process.

Boltzmann exploration: In state s, an action a is chosen with probability

e
Q(s,a)
TP

a0
e
Q(s,a0)

T

,

where T is called the ”temperature” parameter and T should decrease during
the course of the algorithm.

For reasons of simplicity we use in our experiments the −greedy exploration
rule with a parameter decreasing over time, which is also the most widely used
strategy in the literature. See (Thrun, 1992), and (Ratitch & Precup, 2003)
for surveys on exploration.

2.2.5 Learning method

The learning method deals with iterative updates of the agent’s knowledge. As
we mentioned before we focus here on Q-learning methods. The concept of
Q-learning was first described by Watkins (Watkins, 1989). Several variants of
the Q-learning method have been proposed since then. The classical method
and convergence properties were developed using backup tables to represent
the knowledge structure. Here we present the most standard tabular meth-
ods and their counterpart using neural networks as the parametrized function
approximation.

The method is based on estimations of the Q-values which are updated after
each agent-environment interaction. The agent starts with some estimation
(arbitrarily or using some a priori information in case it is available). At each
decision moment t in which the environment is in state st the agent chooses
an action at according to its behavior (see Section 2.2.4). The environment
reacts to the taken action by giving a reward rt+1 = r(st, at) to the agent and
changing to a new state st+1 in a next decision epoch t + 1 that occurs after
d(st, at) units of time. With this new information the agent updates the Q-
values and decides upon a new action at+1 for the present state st+1, etc. The
update rule for this method, given the experience tuple < st, at, rt+1, st+1 >,
is as follows:

Qt+1(st, at) = Qt(st, at) + αtδt (2.8)

δt = rt+1 + γd(st,at)max
a

Qt(st+1, a)−Qt(st, at),

where γ is the discount factor, αt is the learning rate (see below for details)
and δt is known as the temporal-difference. The idea of this formula is based
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on the application of the Robbins-Monro stochastic approximation algorithm
to estimate an unknown mean (see Equation 2.4) using a single sample, and
can also be viewed as a stochastic approximation form of the policy iteration
algorithm.

The version of the update rule, when using ANN instead of backup tables
to approximate the Q-values, is based on the update of the weight vector w as
follows:

wt+1 = wt + αtδt∇wtQ(st, at, wt) (2.9)

δt = rt+1 + γd(st,at)max
a

Q(st+1, a, wt)−Q(st, at, wt).

In this case the update rule can be viewed as a gradient descent method in
the ANN weight space that aims to minimize the temporal-difference term.

Q-learning is an off-policy method, meaning that the policy learned about
does not need to be the same as the one used to select the actions. In particular
it learns about the greedy policy, while the agent follows a policy involving
exploratory actions.

In the case of the backup table representation this method converges to the
optimal action values with probability 1 as long as all pairs (s, a) are visited
infinitely often and the learning rate is reduced over time according to the usual
stochastic conditions for the learning rate (see conditions (2.10), see this result
in (Watkins & Dayan, 1992)).

Convergence proofs, for the case when using neural networks, are much
more restricted than when using a backup table representation. Only for some
specific well-structured problems convergence can be guaranteed (see (Bertsekas
& Tsitsiklis, 1996), page 337). A problem here is that once the weight vector is
updated all the Q-values are also changed and there is no guarantee of reducing
the temporal-difference term at each iteration. Thus the algorithm has the risk
of divergence. However there is a number of successful applications using RL
with ANN. It is an active and open research area. Recent work (Ratitch, 2005)
has been done that shows how some attributes of the MDP may be used to
predict the performance of the RL algorithms and help with the design of the
RL-system.

An RL approach involves an interesting parameter setting dimension. Some
tuning is necessary before one finds an efficient parameter setting. Here we con-
sider two sets of different parameters. These parameters are related to learning,
and bootstrapping. We discuss these issues in the next two paragraphs.
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Learning rate: the parameter α

The learning rate or step-size αt is a measure of how fast new information is
incorporated in the general knowledge. In the previous section αt ∈ [0, 1] was
introduced, but its behavior over time was not discussed. There are well known
conditions for the learning rate from the general stochastic approximation the-
ory that are also used in the convergence proof of the QL methods:

∞X
t=1

αt =∞,
∞X
t=1

α2t <∞. (2.10)

The first condition is to guarantee that steps are large enough to overcome
initial conditions or random fluctuations and the second is to guarantee that
steps become small enough to assure convergence. Sequences of step-size pa-
rameters that meet both conditions often converge very slowly or need much
tuning in order to obtain satisfactory convergence rates. It is surprising how
many successful applications usually do not use step-sizes satisfying these con-
ditions but for example constant step-size. Using a constant learning rate the
second condition is not met, and the learned function will never completely con-
verge, but will vary in response to the most recently received rewards. However,
this can be desirable in case of a nonstationary environment. The conditions
also require separate learning rates for each state-action pair which again could
be not very practical for large sized problems. In our experiments we use
a decreasing time-varying learning parameter independent of the state-action
pair.

Bootstrapping degree: the parameter λ

There is a class of more advanced updating rules. Instead of updating the esti-
mated value function based solely on the approximated value of the immediate
successor state (see for example update rule 2.8), one can think of methods
that base the updates on weighting the values of next states (bootstrapping)
as suggested by the definition of V π(s) in Equation 2.1. This is precisely the
idea of methods that introduce the parameter λ as the weighting factor.

The Q-learning updating rule is based on just the one next reward, using
the value of the state one step later as a proxy for the remaining rewards. The
Monte Carlo methods for episodic tasks ((Bertsekas & Tsitsiklis, 1996),(Sutton
& Barto, 1998)) perform a backup for each reward from the current state until
the end of the episode. One kind of intermediate method consists of performing
a backup based on an intermediate number of steps: more than one, but less
than all of them until termination. The updating rule at iteration t using n
steps is as follows:
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Qt+n (st, at) = Qt (st, at) + αt(R
(n)
t −Qt (st, at)),

R
(n)
t = rt+1 + γrt+2 + ...+ γn−1rt+n + γnVt (st+n)

However, n-step backups are rarely used because they are inconvenient to
implement. Computing n-step returns requires waiting n steps to observe the
rewards and states. It is possible to use an average of any set of returns, even
an infinite set, as long as the weights on the returns are positive and sum to 1:

Rλ
t = (1− λ)

∞X
n=1

λn−1R
(n)
t

= (1− λ)
£
(rt+1 + γVt (st+1)) + λ

¡
rt+1 + γrt+2 + γ2Vt (st+2)

¢
+ ...

¤

Qt+n (st, at) = Qt (st, at) + αt
¡
Rλ
t −Qt (st, at)

¢
.

This is a forward view, a theoretical one that is not directly implemented
because it needs knowledge of what will happen some steps later. There is
an equivalent but mechanistic view: a backward view, based on the following
relation:

Qt+n (st, at) = Qt (st, at)+

αt

Ã
(1− λ)

∞X
n=1

λn−1
Ã

nX
m=1

γm−1rt+m + γnmax
a0

Qt (st+n, a
0)

!
−Qt (st, at)

!

Qt+n (st, at) = Qt (st, at) + αt

∞X
m=1

(γλ)
m−1

δt+m

Note that we use here that Vt (s) = maxa0 Qt (s, a
0). The last expression

was obtained swapping the order of the two summations and using algebraic
transformations, see (Bertsekas & Tsitsiklis, 1996) and (Sutton & Barto, 1998).
The backward view provides an incremental mechanism for approximating the
forward view. It is like looking back in the time and correcting previous pre-
dictions by using the information on actual states. In the backward view there
is an additional memory variable associated with each state and action: the
eligibility trace et(s, a) that can be viewed as a temporary record of the occur-
rence of an event that makes it eligible for further learning. The updating rule
can be as follows:
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Qt+1(s, a) = Qt(s, a) + αtδtet(s, a)

δt = rt+1 + γd(st,at)Qt(st+1, at+1)−Qt(st, at)

et(s, a) = Is,st Ia,at + γd(st,at)λet−1(s, a),

where Ix,y is a comparison function4.

This update corresponds to the SARSA method where the Q-values are
updated using the real next action at+1 instead of the greedy one used in Q-
learning. In each step the eligibility traces for all states and actions decay
by γλ and - in addition to that - for the current state-action pair the trace
is augmented by one. At any time eligibility traces record which states have
recently been visited.

For the Q-learning update in case that an exploratory action occurs the
eligibility traces are set to zero. Next the Watkins-Q(λ): (backup table repre-
sentation)

Qt+1(s, a) = Qt(s, a) + αtδtet(s, a),

δt = rt+1 + γd(st,at)max
a

Qt(st+1, a)−Qt(st, at),

et(s, a) = Is,st Ia,at +

½
γd(st,at)λet−1(s, a), if at−1 was greedy
0, otherwise

.

For the case of a neural network representation of the Q-values eligibility
traces do not correspond to each state-action pair but a trace is defined for
each component of the parameter vector. In this case it can be interpreted as a
smooth parameter change proportional to the gradient function. Next we show
the update rule for this case, the Watkins-Q(λ,w): (ANN representation)

wt+1 = wt + αtδtzt

δt = rt+1 + γd(st,at)max
a

Q(st+1, a, wt)−Q(st, at, wt)

zt = ∇wQ(st, at, wt) +

½
γd(st,at)λzt−1, if at was greedy
0, otherwise

.

Eligibility traces provide a link between Monte Carlo (λ = 1) and one-step
RL methods (λ = 0).

The target values used when λ = 1 are unbiased samples but may have
significant variance since each depends on a long sequence of rewards from
stochastic transitions. By contrast when λ = 0 the target values have low
variance since the only random component is the reward of a single transition,

4 Ix,y =
1,
0,

if x = y
otherwise
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but they are biased by the inaccuracy of the current estimated values.

It is the belief that the parameter λ (for λ 6= 0) as distributing credit
throughout sequences of actions, leads to faster learning. Experimental results
(Sutton, 1988) for a specific prediction problem show that intermediate values
of λ that are close to 0 give the best results. However a full understanding of
how λ influences the rate of convergence is yet to be found. Van Roy (Van Roy,
1998) has suggested that it could be desirable to tune λ as the algorithm
progresses but even both directions (starting with λ = 0 and approaching
1, and the other way around) have been advocated. For reasons of simplicity
in our experiments for the prototype type problem we shall take in some cases
λ > 0, λ constant.

Model based learning

An important issue in learning techniques is the learning speed. Besides the
bootstrapping idea there are several other QL methods that aim to speed up
the standard QL. Here we focus on a model-based approach.

So far we have discussed model-free RL methods where an agent learns
about an optimal policy without ever knowing explicitly the model of the en-
vironment it interacts with. However, these methods may have been using
inefficiently the data they gather and therefore may need too much time to
achieve good performance. Model-based methods are alternative methods in
which the agent incorporates in its learning process information that it gathers
about the model.

There is an open debate about the question whether model-based or model-
free methods are better. A fact is that, although model-free methods use less
computation time per experience, they do not exploit all the information they
gather and they make inefficient use of it. This could be one of the reasons for
the large amount of experience these methods need in order to obtain a good
performance. In this sense it is believed that incorporating some knowledge
from the accumulated experience in the learning procedure can in fact help
with the learning speed. But model-free methods are much simpler and are
not affected by biases in the design of the model. Recently Kerns and Singh
(Kearns & Singh, 1999) argued that both methods have roughly the same
sample complexity: rather rapid convergence to the optimal policy as a function
of the number of state transitions observed.

Model-based methods, unlike model-free methods, need to store the domain
model besides the value function. This is usually done by means of backup
tables that scale with state and action spaces. Dynamic Bayesian networks can
be used in many cases to represent models in compact form (Tadepalli & Ok,
1998) .

There are also different versions of this model-based approach. In our ap-
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proach the idea is not to make a separation between the learning phase and
the solution phase but to use an idea closer to RL methods. At each time step
the model parameters ( bR(s, a) and cPr(s, a, s0) ) are estimated and used in the
update rule with:

δt = bR(st, at) + γd(st,at)
X
s0

cPr(s, a, s0)max
a

Q(s
0
, a)−Qt(st, at). (2.11)

In the case that one knows the transition probabilities this approach is not
very difficult. However even in the cases we know the arrival frequency per each
type of order, it is not a straightforward matter to compute the summation in
δt. Therefore we briefly present the Dyna-method which is a very intuitive and
simple approach.

The model based Dyna-Q (Sutton, 1990) is an architecture that combines
model learning and direct QL. It simultaneously uses experience to estimate a
model and uses the experience and the estimated model to learn the optimal
policy. The method uses one of the update rules as defined before. However,
after the first updates (model and value function) with the data from the inter-
action between agent and environment, the agent includes additional updates of
the estimated value function by simulating data from the estimated model. In
our case this means simulating a prescribed number of arrival patterns besides
the actual one.

This approach can easily be used for our models. In general we do not need
the complete model but only a sample model. We present some experiences
using these ideas in the next chapter.

2.3 Reinforcement Learning for Order Accep-
tance

In the next chapters we work with the application of RL to different models of
the OA problem. The models differ in complexity, we start with a very simple
prototype problem (single server, single arrivals) and we end up with integrated
systems where the RL-agent should learn other kind of decisions besides the
OA decision. Here we discuss some general considerations used throughout the
rest of the thesis in the application of RL to these OA models.

2.3.1 A simulation model

RL is a simulation based approach to solve SMDP. Our simulation system has
two main components: the simulation model of the environment and the RL-
agent. The environment represents the system where the OA problem is defined
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and the RL-agent is the decision maker that should solve the OA problem.
Orders arrive requesting some capacity and the RL-agent should decide on the
acceptance or rejection of the orders.

OA problems under uncertainty can be modelled as SMDPs. The stochastic-
ity in the models in this thesis are given by different sources of uncertainty: the
stochastic arrival of orders (see Chapters 3-6), stochastic capacity perturbation
(see Chapter 4), the stochastic processing time of the orders (see Chapters 5
and 6) and the stochastic negotiation of due-dates (see Chapter 6). In practice
it is hard to obtain data such as the transition probabilities for the states of
the model, even in the case that we know all the distributions of the stochastic
processes mentioned above. That is why complete explicit models have limited
meaning for applications. The advantage of using RL to solve SMDP is that
it is not necessary to have a complete explicit model as described in 2.1 but a
simulation model, i.e., a way to generate the transitions of the state instead an
explicit formulation of the transition probabilities. Given an action in a current
state, the simulation model of the environment should generate a next state
and an immediate reward, that is exactly what we need to apply RL. When
there is not enough information available to define a simulation model (e.g. we
do not know the distributions of the stochastic processes), the RL-agent could
interact then with the real environment. In such cases it is recommended to
use some model-based methods to speed up the learning process. In the OA
problem presented in Chapter 3 we explore some of these model-based meth-
ods. Since our focus is not in collecting data but on the RL solutions, in the
rest of the thesis we only consider the simulation model.

To define the simulation model of the environment some considerations have
to be done. First is to determine the decision moments. For reasons of sim-
plicity we focus here on discrete time moments, even when orders may arrive
continuously. However the elapsed time between two consecutive decision mo-
ments is not constant. This can be so since we do not consider decision moments
when there is a unique possible decision, e.g. there is not enough capacity for
the requesting orders, thus the next decision moment will be only when ca-
pacity is available (see Chapter 3). Another case is when we use a time-off in
order to choose orders one by one from a batch of orders (from 4 on). Secondly
we define the states that describe the environment at each decision moment.
The state in the simulation model is characterized by two main components:
orders requesting service and capacity profile, so there is a general structure for
a state s = (orders_list, capacity_profile). The information encapsulated in
the state depends on the complexity of the environment, and we will discuss
it for each model in the next chapters. The dynamic of the environment is
assumed in general to be an SMDP.

The RL-agent uses a static structure to represent its knowledge. In the
models considering multiple arrivals (4,5 and 6) it is necessary to know before-
hand the total number of order types that may arrive to the system. This is
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because the component orders_list in the state should have an entry for each
type of order. But the characteristics of each order (e.g., reward upon accep-
tance, processing time, due-date, etc.) may be only known after processing the
order.

At each decision moment, the agent receives information about the state
of the system. Depending on the agent’s behavior and knowledge an action is
taken about the acceptance or rejection of the orders. The agent receives an
immediate reward as consequence of the taken action. Using the reward signal
and the information about the next state the environment is into, the agent
updates the knowledge, and a new cycle starts again.

2.3.2 Tuning RL-agents

One of the most difficult problems in the application of the RL methods is the
adjustment of parameters. These parameters are the period of training, which
we consider as the number of Agent-Environment iterations; and the learning
and exploration rates. A characterizing property of an RL-agent using ANN
knowledge representation is the number of hidden neurons (θ). Increasing θ
increases the potential of the approximator but also increases the number of
weights in the ANN to be updated at each iteration. Initially one could start
with a small number of hidden neurons and increase it only when necessary.
We combine all these parameters in a set that we call learning schedule with
six parameters (T, α0, 0, Tα, T , θ). A learning schedule specifies:

• T : number of iterations of the learning process,

• α0: initial value of the learning rate,

• 0: initial value of the exploration rate,

• Tα, T : parameters for the learning and exploration rate-decreasing func-
tions:

αt =
α0

1 + t
Tα

, t =
0

1 + t
T

, t = 1...T ,

where Tα and T respectively define the decreasing speed.

• θ: number of hidden neurons,

In our implementations these parameters have been chosen through exper-
imental experience and are by no means optimized. It could be possible after
extensive numerical experiments to extract regularities that may help to set
guidelines for the tuning of the parameters. In 5 we propose a methodology
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for tuning some parameters based on experimental experience from Chapters
3 and 4.

Algorithm 2.1 sketches the QL method as we described above.

Require: learning schedule: (T, α0, 0, Tα, T , θ)
Require: Agent with a knowledge structure Q [with m hidden neurons in case
of ANN]

Require: SMD Environment where the Agent is situated
Init knowledge Q
Init s0 in Environment
for t = 0 to T − 1 do
at = t − greedyQ.Policy(st, t)
(rt+1, st+1, dt+1) = Environment(at)
target = rt+1 + γdt+1max

a0
Q(st+1, a

0)

Update knowledge Q(st, at, target, αt)
Update parameters: αt+1 = α0

1+ t+1
Tα

, t+1 = 0

1+ t+1
T

Algorithm 2.1: Q-learning

2.4 Summary

In this chapter, we present the basic theory of Reinforcement Learning with
the underlying theory of semi-Markov Decision problems and the main learning
methods we deal with in this thesis. The RL methods discussed here can be
viewed as suboptimal methods to approximate the action-value function of
SMDP through simulation. The methods do not need an explicit model of the
problem but a simulation model, which is useful for complex problems that are
hard to model.

We also present a general idea on how OA problems under uncertainty can
be modelled as SMDPs and solved by using RL methods. In the next chapters
we discuss in detail different OA problems and the use of the RL approach.
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Chapter 3

A simple Order Acceptance
problem

In this chapter we present a simple Order Acceptance problem which is used
as a starting point in our study.

In Section 3.1 we describe the problem and how it is modelled as an SMDP
in Section 3.2. There we obtain the optimality equations and the threshold
structure of an optimal policy. Methods from SMDP theory can easily cope
with this problem when the complete model is known. So we can use an opti-
mal solution to compare with the results from the RL algorithms. In Section
3.3 we discuss the application of RL to this simple problem and the experi-
mental results are shown in Section 3.4. Finally in Section 3.5 we draw some
conclusions and set guidelines for the more complex cases presented in the next
chapters.

3.1 Problem description

In terms of the characterization (i)-(vi) given in Chapter 1 we assume the
following:

(i) only one server is available, hence only one order can be processed at
any moment in time,

(ii) order definitions are based on a finite number of types of orders, where
each type has a specific processing time and immediate reward,

(iii) at most one arrival in each discrete time unit is kept, since a single
server can serve only one job at a time. The probability of arrival is order type
dependent,
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(iv) rejection of an order affects only the immediate reward of that order,

(v) order processing requires an order type dependent deterministic service
time from a single server,

(vi) the decision policy does not allow preemption of orders and when the
server is busy the only option for a new order is rejection.

Note that in this case, the orders have the smallest possible set of attributes,
for example the concept of a due-date does not play a role (conceptually it coin-
cides with the processing time here), and batch arrivals of orders are excluded.
Production capacity is modeled as a single server without a queueing facility.

In the context of SMDP theory, models of more realistic order acceptance
problems can be studied. As mentioned before generalizations with respect to
any of the characteristics (i)-(vi) are interesting from a point of view of ap-
plications in practice. In terms of these characteristics we present in the next
chapters model formulations which take into account: (i) a more general ca-
pacity structure in production, (ii) orders with a larger attribute set including
due-dates, (iii) batch arrivals, (iv) rejection of an order affects only the imme-
diate reward of that order, and (vi) some uncertainty in order processing. In
general this leads us to multi-server (parallel and/or in series) network prob-
lems with waiting lists (queueing) per server (or a common list for a set of
servers) with batch arrivals of orders. As for characterization (iv) effects of or-
der loss, we always consider in this thesis that rejection of an order affects only
the immediate reward of that order. Nevertheless the case in this chapter is
rich enough to demonstrate the complications that arise in finding an optimal
decision policy.

3.2 The SMDP model

In this section we formulate the simple prototype order acceptance problem
described above as an SMDP. Orders arrive in a single arrival process from a
set of n order types. Order type i is characterized by a small set of attributes:

• pi: processing time,

• ri: reward for acceptance,

• qi: probability of arrival.

Production capacity is considered as a single server that can only process
one order at a time. Arrivals are checked every fixed period of time, and a
decision should be taken immediately at that moment if the server is idle:
accept or reject the arrived order. If the server is busy, the arrived order is
lost. This prototype problem can easily be modeled as a discrete time Semi
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Markov Decision Problem (SMDP) as sketched before. The state space is
S = {0, 1, 2, ..n} where 0 indicates that no order has arrived, and the action
space is A = {0, 1}. Table 3.1 shows the one step state transition from the
current state.

current state s 6= 0 s = 0
action (a) 0 1 0
immediate reward R(s, a) 0 rs 0
time until next decision d(s, a) 1 ps 1
transition probability Pr(s, a, s0) qs0

Table 3.1: Dynamics of transition from current state s in the simple OA model

Given the current state s 6= 0, which identifies the type of order arriving,
there are two possible actions: reject (a = 0) or accept (a = 1) the arriving
order. Depending on the chosen action the immediate reward may be 0 if the
arriving order is rejected, or rs if the order is accepted. The time until the
next decision epoch also depends on the chosen action. If the arriving order
is rejected, the next decision epoch would be one time unit ahead, when we
check for a new arriving order. If the order is accepted, the server would be
busy during the processing time of the accepted order (ps), so the next decision
epoch would be right after the termination of that service. In case the current
state is s = 0, it means that there is no arriving order so the only option is
rejection with zero immediate reward, the next decision epoch would be one
time unit ahead. The next state s0 does not depend on the current state nor
the chosen action, so the transition probability to that state is the probability
of arrival of an order of type s0 6= 0, or the probability that no arrival occurs
s0 = 0. Note that

nP
s=0

qs = 1.

The objective is to find a deterministic policy π:

π(s) =

½
1
0

accept the arriving order s
reject the arriving order s

which maximizes the performance of the system. The performance of the sys-
tem is measured as the expected value of the total discounted reward. The
Bellman equation for the value function V ∗ corresponding to the optimal pol-
icy π∗ is given by

V ∗(s) = R(s, π∗(s)) + γd(s,π
∗(s))

X
s0

qs0V
∗(s0),

with γ the discount factor. The optimal action-value function Q∗ (s, a) is de-
fined as
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Q∗ (s, a) = R(s, a) + γd(s,a)
X
s0

qs0V
∗(s0),

and satisfies

Q∗(s, 0) = γβ,

Q∗(s, 1) = rs + γpsβ,

where β =
P
s0
qs0V

∗(s0) is defined by the problem instance. So an optimal policy

in this case has a very special form: an order of type s may be accepted if and
only if rs ≥ (γ − γps)β (namely Q∗(s, 1) > Q∗(s, 0)).

Hence this policy has a nice simple threshold structure. This can be seen as
a first example of how this way of modeling guides to heuristic rules. We shall
further elaborate on such in Chapter 4. The policy iteration algorithm finds
the optimal policy π∗ for this problem in at most n steps. Since we want to look
at this problem from an incomplete information perspective, in general these
traditional methods do not fit into our view. A straightforward way to deal with
incomplete information is a two phase method. In the first phase the unknown
parameters of the model are estimated. In the second phase, the complete
problem with the estimated parameters is solved. In this problem estimation
of parameters boils down mainly to estimation of the transition probabilities.
Since the essence of the transition probabilities are the arrival intensities, this
can simply be done using the historical arrival fraction of orders of type i as
an estimator for qi. Other methods that combine learning and solving without
separation in two phases are those which attempt to learn action-value functions
(Q-learning).

3.3 Reinforcement Learning approach

Here we present the application of Reinforcement Learning to the prototype
order acceptance problem described before. We use QL methods that aim to
approximate the optimal Q-value function as discussed in Chapter 2. The RL-
agent should learn an OA-policy while interacting with the environment. The
RL-agent uses information about the type of order arriving and in case the
server is idle a decision will be taken. If an order arrives while the server is
busy, it goes out of the system. Thus, given the state s = (i) the agent chooses
with certain probability the action a from A(s) which maximizes Q(s, a). The
probability of choosing the action with highest Q-value increases during the
training of the agent and it is controlled by an exploration strategy as explained
in Chapter 2.

The application of Q-Learning to our prototype problem is quite straight-
forward since it is a simple model with the number of states depending on the
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different type of orders and only two actions that are possible for each state.
The agent has always the possibility of choosing one of the two actions; which
one is chosen depends on the current policy. The goal is to maximize the ex-
pected total discounted reward. Let us use γ = 0.9 as discount factor. The
behavior of the RL-agent is according to an −greedy exploration rule: with
probability 1 − the agent chooses a greedy action and with probability a
random action. The parameter decreases over time according to the following
rule t = 0

1+ t
T
. Next we discuss the knowledge representation and the learning

methods we use.

3.3.1 Knowledge representation

As we start with a very simple problem and a small case (in Section 3.4.1), just
to get some insight into the application of the algorithms, it is worthwhile to
try the backup table representation. This will allow us to study the influence
of the parameter settings without the negative noise of using function approx-
imation, in the QL-algorithms. In Section 3.4.1 we present the application of
Q-learning using backup tables to a small case. There we discuss different para-
meter settings and alternative solutions. Even for this simple problem extensive
experimentation was necessary in order to find appropriate parameters.

However, as our main interest is in the possibility of using ANN, we also
explore this issue for this small case in Section 3.4.1. The Q-values are stored
in an I − θ − 1 perceptron as discussed in Section 2.2.3. The input of the
perceptron is a codification of the state-action pair (s, a), in the following way.
We use n binary inputs, one per each type of order. A one at input i indicates
that an order of type i is requesting service. For the action we use a binary
input, one for the acceptance and zero for rejection. Using this codification for
the input, the size of the ANN is (n + 3)θ + 1 which is in general (except for
θ = 1 and n ≥ 4) a larger number of unknown parameters to be adjusted, than
the number of Q-values to be learned (2n). There are other ways of encoding
this information, but this codification easily generalizes to the other models in
the next chapters, and it enables us to extend the results obtained with respect
to the parameters settings.

The output of the perceptron is a single value that is the approximation of
the state-action value function Q(s, a). After each decision, the agent receives
information about the state transition: the new state and the reward value.
With this information, error backpropagation is used to update the estimation
of the Q-values (see Formula 2.8 and 2.9 ).

In Section 3.4.2 we present experimental results with cases of larger size
using also ANN.
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3.3.2 Learning methods

As explained before, we focus here on traditional Q-learning as introduced in
Section 2.2.5. For all cases we present experiments using backup tables and
ANN to represent the knowledge structure. However, as a matter of comparison
we also try other alternatives:

1. For the small case of Section 3.4.1 we present the use of the bootstrapping
parameter λ as introduced in Section 2.2.5.

2. For all cases, we present the application of the naive two-phases method.
In this method the agent keeps an explicit estimated model. At each
agent-environment iteration, the agent updates the frequency of arrivals
for the arriving order and the respective reward value depending on the
decision. Using policy iteration an optimal policy with respect to the
current estimated model is found.

3. For all cases we present the application of the model based learning
Dyna-method as introduced in Section 2.2.5. Also in this method the
agent keeps an explicit estimated model which is updated at each itera-
tion. But in this case, instead of solving the model, the method includes
M extra simulated iterations from the estimated model in between two
Q-learning iterations. The number M of simulated iterations can be
made dependent of the iteration number t and in our experiments we use
M(t) = max(100, t) at iteration t.

3.4 Experimental results

In this section we present the application of QL methods, as discussed in Chap-
ter 2, to some cases of the prototype problem presented in this chapter. First
we introduce some notation for the performance measures. In Section 3.4.1 we
study a small case with three type of orders. This small case introduce us in the
use of the RL approach. Therefore we study the influence of the different para-
meters from the learning schedule. For this small case we discuss the different
approaches discussed in Chapter 2: the naive model based method, learning
using backup tables, the model based Dyna method, the use of bootstrapping
and finally the use of ANN.

In Section 3.4.2 we present two larger cases with 5 and 10 jobs.

In each experiment we compute averaged performance criteria over 10 sim-
ulation runs and compare this performance to the optimal solution. We use
the following performance criteria:

• MSE_Qt: The mean square error of the (learned) actual Qt-values com-
pared to the (optimal) Q∗-values at iteration t.
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• MSE_Qπt : The mean square error of the Qπt-values corresponding to
the (learned) policy πt at iteration t, compared with the (optimal) Q∗-
values. The learned policy πt is defined as the greedy policy with respect
to the learned Qt-values. Note that this measure provides information on
how close to the optimal policy is the learned policy after t iterations in
the learning process.

• AvToRewt: The total average reward accumulated per unit of time up
to the time corresponding to iteration t.

The Mean Square Error (MSE) is a common measure to determine proximity
betwen two vectors.

MSE_Qt =
1

|SxA|
X
s∈S

X
a∈A

(Qt(s, a)−Q∗(s, a))2

MSE_Qπt =
1

|SxA|
X
s∈S

X
a∈A

(Qπt(s, a)−Q∗(s, a))2

The Qt vector is obtained from the learned RL-agent at iteration t, and Qπt is
the exact Q-value function for the πt policy. Note that πt(s) = argmax

a∈A
(Qπt(s, a)).

The Qπt values are computed using the value-iteration algorithm.

The Q-learning aims to learn the optimal state-action Q-values, this means
that the first measure should be zero. At the end what one is looking for is
an approximation of these Q-values that leads to the optimal policy; even if
MSE_Qt is not zero we can have MSE_Qπt = 0, meaning that we have
learned an optimal policy. Note that on the other hand MSE_Qt = 0 ⇒
MSE_Qπt = 0. If any of these two measures is zero, we could say that
the RL-agent has learned the optimal policy, so its total average reward must
approximate the optimal average reward. Note that the total average reward
will not be exactly equal to the optimal average reward because we measure
it since the beginning of the learning process, when the RL-agent still has not
learned much, and it should be doing some exploration.

3.4.1 A small case

We consider a simple instance with 3 type of orders. Table 3.2 shows the
problem definition.

According to the prototype model in Section 3.2 the states of the model
are defined by the type of order arriving when the server is idle. At each
decision moment the possible actions are to accept or to reject the arriving
order. The goal is to find a deterministic policy that maximizes the total
expected discounted reward with discount factor γ = 0.9. Using the complete
model information the optimal policy is easily found by policy iteration. Table
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order
type

probability
of arrival

processing
time

reward

1 0.4 2 3
2 0.5 4 2
3 0.1 5 8

Table 3.2: Data set for a small case on the prototype problem

3.3 shows the optimal policy π∗ and the corresponding Q∗−values. In this case
the optimal policy π∗ rejects an arriving order only if it is of type 2.

state Q∗(state,reject) Q∗(state,accept) π∗(state)
1 10.78 12.70 1
2 10.78 9.86 0
3 10.78 15.07 1

Table 3.3: Optimal Q-values and policy for the small case of the simple OA problem

An order-greedy policy π0 that accepts all the orders has a mean square
error in the Q-values compared to the optimal Q-values (MSE-Qπ0) of 1.63, see
Table 3.4.

state
order-greedy policy
π0 (always accept )

Qπ
0
(s,0) Qπ

0
(s,1)

greedy Q-values
policy

1 1 9.35 11.41 1
2 1 9.35 8.81 0
3 1 9.35 14.13 1

Table 3.4: Example in the small case of the simple OA problem where non-optimal
Q-values lead to the optimal policy by taking the action with the highest Q value

Notice that in the case the Q-values for policy π0 would have been learned
at iteration t, looking at the greedy policy with respect to these values (πt(s) =
argmax

a
Qπ0(s, a)) one obtains the optimal policy πt = π∗ which rejects only

orders of type 2. This illustrate a situation where MSE_Qt (= 1.63) differs
from MSE_Qπt (= 0).

Figure 3.1 shows the total average reward per unit of time of two different
agents that follow these two policies. The "always accept" agent achieves an
average total reward of 0.92 and the optimal agent of 1.11. We use these agents
to compare with the results of agents that use other learning methods presented
here.

Next, we present different approaches to solve this problem with incomplete
information. First as a preparation, the naive model-based approach and the
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Figure 3.1: Total average reward of two agents following fixed policies: the optimal
policy and the ”always accept” policy, in the small case of the prototype model

backup-table method are discussed, next we consider neural networks knowl-
edge representation methods. Finally we present a comparison of some of the
best learning agents including one using the Dyna learning method.

A two-phase method: naive model based approach

Here at each iteration the agent updates the frequency of arrival of the arriving
order and the respective reward value depending on the decision. The estimated
model is solved using policy iteration. Due to the structure of the model this
learning process is independent of the followed policy.

The results show that 50 iterations were sufficient to learn the optimal
policy, MSE_Qπt = 0 with MSE_Qt → 0, t ≥ 50.

QL results with backup tables

Here we present experiments to analyze the influence of the parameter settings
in Q-learning using backup table as the knowledge structure. For this small
case it is very easy to use Q-learning with backup table, there are only 6 Q-
values to learn. A first study shows the results of using different learning and
exploration parameters with the bootstrapping parameter λ set to zero. In a
second study we use fixed learning and exploration parameters corresponding
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with the best performance from the first study, in order to analyze the influence
of the bootstrapping parameter.

Study 1: influence of learning and exploration parameters. We use
some representative combinations of learning and exploration parameters. The
parameters correspond to the learning schedule as described in Section 2.3.2.
This schedule defines the number of iterations of the training process (T ), the
initial value of the learning and exploration rates (α0, 0), and the parameters
for the learning and exploration rates-decreasing functions (Tα, T ). These
parameters are chosen through experimental experience and are by no means
optimized.

Parameters αt and t are the learning and exploration parameter at iteration
t during the learning process. We use curve decreasing functions for both
parameters as follows

t = 0

1+ t
T
, αt =

α
0

1+ t
Tα

,

where 0 and α0 are initial values, T and Tα respectively define the decreasing
speed for both parameters. Note that the parameters drop to half its original
value when t = T , Tα respectively.

The results from the two-phases method indicate that approximately 50 it-
erations were necessary in order to estimate the arrival rates accurately enough
such that a good estimate of the Q-values leads to the optimal policy. This
strongly suggests that we should keep a certain level of exploration in our
Q-learning, till such sufficiently accurate estimates are possible.

In the experiments we explore how initial and speeding parameters should
be set. After some trial and error experimentation we choose the following
combinations of parameters. We use T = 2000, 0 = 1, T = 100 and α0
= 0.5, 1 with Tα = 200, 100, 50, respectively. Besides we add another value for
T (T = 200) in order to assess our choice for T = 100. Summarizing, we use
the 7 combinations of parameters as shown in Table 3.5.

combination 1 2 3 4 5 6 7
T 100 200
α0 0.5 1
Tα 200 100 50 200 100 50 100

Table 3.5: The 7 combinations of parameters for a first study in the small case of
the simple model

Figures 3.2, 3.3, 3.4 and 3.5 show results from the performance measures
MSE-Q, MSE-Qπ and AvToRew for these 7 different learning schedules. Each
graph represents the average results over 10 independent simulation runs (repli-
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cations). Figure 3.2 represents the MSE-Q curves for the first six combinations.
Combination 2 with Tα = 100 leads to the best MSE-Q performance for α0
= 0.5. In case α0 = 1 we find even better results, again for Tα = 100 in com-
bination 5. These two combinations (2 and 5) also achieve the best average
reward, see Figure 3.3.
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Figure 3.2: MSE-Q performance in the small case of the simple OA model using six
different learning schedules. All combinations use same exploration parameter. The
first 3 use α0 = 0.5 and Tα = 200, 100, 50. The last 3 use α0 = 1 and Tα = 200, 100, 50

The results from the MSE-Qπ performance in Figure 3.4 match pretty well
with the results of the MSE-Q performance. It shows that each combination
after a hectic start shows rather stable behavior after learning certain optimal
policy. Combinations 1 and 3 never learned the optimal policy (MSE-Qπt 6=
0,∀t). Although for combinations 4 and 6 MSE-Qπt achieves the value zero,
it is not as stable as in in combinations 3 and 5. These two combinations (3
and 5) seem to be the best options. However, according to the results of the
MSE-Q performance in Figure 3.2, and the AvToRew performance in Figure
3.3, we have a preference for combination 5.

Next we analyze whether increasing exploration could improve the results.
Figure 3.5 shows the performances for the combinations 5 and 7. The combi-
nation 7 uses more exploration than the combination 5. The results show that
both cases learn an optimal policy. Note however that the RL-agent follows an
exploration policy ( -greedy) instead of the learned policy. This could explain
why combination 5 achieves better average reward. So in this case increasing
exploration deteriorates the AvToRew performance. These results show the
advantage of using no more exploration than necessary.
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Figure 3.3: AvToRew performance in the small case of the simple OA model using six
different learning schedules. All combinations use same exploration parameters. The
first 3 use α0 = 0.5 and Tα = 200, 100, 50. The last 3 use α0 = 1 and Tα = 200, 100, 50
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Figure 3.4: MSE-Qπ performance in the small case of the of the simple OA model
using six different learning schedules. All combinations use same exploration parame-
ter (Te = 100). The first 3 (on the left) use α0 = 0.5 and Tα = 200, 100, 50. The last
3 (on the right) use α0 = 1 and Tα = 200, 100, 50
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Figure 3.5: Performance in the small case of the simple OA model using two different
learning schedules. Both combinations use same learning parameters (α0 = 1, Tα =
100) but different exploration parameters (T = 100, 200)
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Figure 3.6: AvToRew performance in the small case of the simple OA model using
different values for λ
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Study 2: influence of the bootstrapping parameter λ. Using the com-
bination 5 of parameters (T = 2000, 0 = 1, Tα = T = 100, α0 = 1) from the
first study, we analyze the influence of different values of the bootstrapping
parameter λ (0, 0.2, 0.4, 0.6, 0.8, 1) in the learning process. Bootstrapping in-
troducing λ > 0, does not help to improve the results, see Figure 3.6. This
result support our choice for using λ = 0.

QL experimental results with neural networks

In this section we present some results for this small case using a neural network
approach as explained in Section 3.3.1. As with the backup tables, we need
a parameter setting. Whereas previously α0 = 1 was a good choice, it turns
out that now working with α0 = 0.1 (Tα = T = 100) is a better choice. This
smaller value for α0 compensates for the fact that now by updating the weights
w in the perceptron, all Q-values are changed and not a single value as in the
backup table method. Some tests on parameter settings were necessary to find
out that these settings give an acceptable solution, but we shall not report on
that here. Instead we shall focus on the effects of the knowledge structure,
mainly the number of hidden neurons. Figures 3.7, 3.8 and 3.9 show the three
performance measures previously defined, (MSE-Q, MSE-Qπ and AvToRew)
for 5 RL-agents that use different number of hidden neurons (1, 2, 3, 4, 5 ).

The figures show that in general the quality of the results increases with
the number of hidden neurons. We want to emphasize that this is rather
unexpected, since as discussed in Section 3.3.1, already for one hidden neuron
the number of parameters in the NN exceeds the number of Q-values in this
simple case. A "decreasing rate of return" effect for these excess parameters
would be reasonable in the long run. It is an interesting observation that the
ANN is capable to exploit the excess degrees in freedom for finding a more
efficient route to good approximations. Notice that except for the case of one
hidden neuron, the rest of the cases show an average total reward superior to
the ”always accept” policy as depicted in Figure 3.1.

An experiment was made with different values of the parameter λ (0, 0.1,
0.2,...,1). In these cases the same λ value was used through each run. Again
there was no significance difference in the quality of the learned Q-values, using
different values of λ, but values in the range 0.3 to 0.5 speeds up the learning
process at early stage.

Final Comparison

Figure 3.10 shows a final comparison between the total average reward for dif-
ferent agents. All the learning agents outperformed the greedy policy and have
a tendency to approximate the optimal one. Dyna and Naive that incorporate
model base ideas have a faster learning than the direct RL.
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Figure 3.7: MSE-Q performance of ordinary Q-learning for different sizes of the
ANN in the small case of the simple model
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Figure 3.9: AvToRew performance of ordinary Q-learning for different sizes of the
ANN in the small case of the prototype model
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Figure 3.11: Different RL-Agents in problems with 5 (left graphic) and 10 (right
graphic) type of orders
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3.4.2 Larger cases

In this section we present experimental results of Q-learning using ANN in
problems with 5 and 10 orders. The learning and exploration rates for both
problems were αk = 5/(500 + k), k = 200/(200 + k).

Figure 3.11 shows the comparison between agents using different numbers
of hidden neurons. The results show that using one hidden neuron gives no
good results but from 2 hidden neurons on results get better. For the case
with one hidden neuron the ANN loses the generalization capabilities and is
not very flexible.

Figure 3.12 shows the comparison of 4 learning agents (RL-NN,RL-BT,
Naive-MB, Dyna-MB) with 2 agents using fixed policies ( ’always accept ’,
optimal). As in the small case, all the learning methods outperformed the
greedy policy ’always accept’ and have a tendency to approximate the optimal
one. Again as expected the model based ideas speed up the learning process.

3.5 Conclusions

As a simple example, the prototype model helped us as an introduction to
the application of the RL approach. In the experiments, backup tables were
less sensitive to parameter settings than the neural networks as the knowledge
structure for the RL-agents. Including model based ideas is also a trivial way
for speeding up the learning process but it increases the computational time
per iteration step. No relevant benefits were found in the final performances
by using a parameter λ different from zero and constant during the learning
process. Increasing the number of hidden neurons generally leads to an incre-
ment of the performance. In all the cases the RL-agents outperform the simple
heuristic rule always accept and approximate the optimal policy. In the next
chapters we apply the RL approach to more complex OA problems.
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Chapter 4

OA in a single resource

In this chapter we present a simple Order Acceptance problem that is an exten-
sion of the problem presented in Chapter 3. The basic difference with respect
to the orders is that we consider here a larger attribute set and with respect to
the capacity we consider here a unique resource which may consist of several
parallel servers that may simultaneously handle more than one order. In Sec-
tion 4.1 we give a detailed description of the problem, then in Section 4.2 it is
modelled as an SMDP.

We define in this chapter a general class of heuristics for OA problems which
is presented in Section 4.3.

In Section 4.4 we discuss the application of RL to this problem.The policy
learned by the RL-agent is implicit in the weights of the ANN, which works
as a black box system not easily interpreted by human reasoning. Therefore
we define in this chapter a general framework to interpret what the RL-agent
learns providing an explanation in a for humans more comprehensible form.

The experimental results are shown in Section 4.5. Finally in Section 4.6 we
draw some conclusions and set guidelines for the more complex cases presented
in the next chapters.

4.1 Problem description

Let us now describe the OA situation in detail. Arrivals of orders take place
at any continuous time moment. However, arrivals are collected and are only
processed at discrete equidistant time moments. The time moments when the
collected arrivals are processed, are the decision moments in which orders are
rejected or chosen for service. So we consider aggregate batch arrivals, i.e.,
several arrivals of each order type during the previous time interval.
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Each order asks for service on a shared resource, which can process different
orders at the same time ( i.e., concurrency is allowed ). Order acceptance has
to be planned over a planning time horizon with H stages. Each stage spans
the time between two decision epochs. There is a maximum capacity Cmax for
every stage that can only be excessed at the cost of a penalty as we explain
below (Equation 4.1). The concept of capacity is filled in in a specific way,
namely in time units of processing times. The vector c describes the capacity
utilization. By ct we refer to the occupied capacity at stage t of the planning
horizon, due to orders in execution accepted previously. Figure 4.1 shows an
example of capacity utilization in a planning horizon with H = 10 stages and
Cmax = 8 where c = (4, 2, 8, 7, 5, 2, 4, 8, 4, 8).
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Figure 4.1: Capacity utilization in a planning horizon with H = 10 stages and
Cmax = 8 where c = (4, 2, 8, 7, 5, 8, 4, 8, 4, 8)

In this chapter we want to consider a larger order’s attribute set than in
the previous chapter, specifically we include the due-date of the order. But
characterizing orders according to their due-dates could create a problem with
respect to the amount of different types of orders. For this reason we consider
here an analogous attribute: due-time, which is a relative concept with respect
to the planning time horizon. The due-time of an order is the time from the
first decision moment after the order’s arrival until its due-date. For example
suppose decision moments are at every one hour, if in a situation like in Figure
4.1 at the stage 1 of the planning horizon we are at time 7.00 hours and the
due-date of an order is at 15.00, its due-time is then 9, which indicates that
the order should be planned not after stage 9 of the planning horizon.

In general order definitions are based on a finite number n of order types,
where type i has an arrival rate (λi), due-time ( ti), expected processing time
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( wi) and generates an immediate reward (ri) upon acceptance.

Order processing requires an order type dependent expected processing time
wi. We allow for uncertainty due to realization differing from the expectation,
causing a possible capacity perturbation. For simplicity we consider a random
perturbation term p ∈ {−1, 0, 1} which affects the capacity profile ct only for
t = 1 with probability Pr(p). If c1 > 0, then in the realization during the
next period the actually required capacity turns out to be c1 + p instead of
the anticipated c1 > 0 . If extra capacity is used in realization (p = 1) and
no regular capacity is available, we introduce a penalty pen(c, p) for using non-
regular capacity as follows:

pen(c, p) =

½
−η when c1 + p > Cmax
0 otherwise,

(4.1)

with η > 0.

When the available capacity is not sufficient for an arriving order, given
its capacity request and its due-date, the only option is rejection. We allow
preemption but we do not allow late delivery. Further decision postponement,
by putting an order in queue till a next decision, is not allowed. At each decision
epoch we assume that arriving orders, occurring after the previous decision
epoch, are accumulated into a list. Then, a decision has to be taken about
which subset of the orders requesting service will be accepted. In principle each
subset of orders should be analyzed, to see whether it fits into the available
capacity in such a way that the due-dates are not violated. In order to reduce
the number of possible decisions to a polynomial size in the number of order
types we impose some restrictions on the structure of the decision rule. Instead
of focussing on all possible subsets of orders at once, as possible decisions, we
impose that the decision is created sequentially, while we call a time off. Each
single decision i in the sequence is either the selection of one of the orders from
the list (i ∈ [1..n]) or the rejection of all of them (i = 0). By definition we
put i = 0, also if the remaining list is empty. If the available capacity is not
enough for an order, then the selection of that order is not an option. If i > 0,
then capacity is allocated to order type i and the list of the remaining orders
is updated. If i = 0, we go to the next decision epoch with a time on and a
list of newly arriving orders.

For the capacity planning we shall use a fixed prescription. Therefore op-
timizing the capacity planning is not an issue. The non-allocated capacity is
available for executing new orders. The processing time for an order can be
freely allocated within the available capacity before its due-date. Essential is
how the capacity profile is updated given the decision i (I) of accepting an order
of type i (i > 0), or (II) rejecting the complete job list (i = 0) which as a special
case always occurs if the job list is empty. For (I) and (II) capacity allocation
will be done following different planning rules. (I) and (II) are different from a
planning perspective.
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In case (I) we choose for a Backward Loading (BL) principle, since allocating
capacity as close to the due-date as possible in this model, provides the best
conditions for accepting more orders from the order list. Algorithm 4.1 sketches
this procedure1.

Require: c and i
t← ti
requested_capacity ← wi

c0(t+ 1 : H)← c(t+ 1 : H)
while t ≥ 1 and requested_capacity 6= 0 do
ξ ← min(requested_capacity,Cmax− ct)
c0t ← ct + ξ
requested_capacity ← requested_capacity − ξ
t← t− 1

if requested_capacity 6= 0 then
return( not possible )

else
return(c0)

Algorithm 4.1: BL (c,i): Backward loading procedure for job type i in a capacity
profile c

For example if in a situation like in Figure 4.1 a new order is accepted with
a due-time 8 and a capacity requirement of 5 units, it is allowed to plan the
execution of that order with BL, providing 4 capacity units more at stage 7
since stage 8 is already fulfilled, and 1 capacity unit more at stage 5 (stage 8
is already fulfilled), see Figure 4.2. Note from the figure that the new order is
allocated in stages 5 and 7 of the planning horizon while there is a different
order allocated in the stage 6, in this sense preemption is allowed.

Case (II) is completely different. If there is still available capacity in the
first stage (t = 1), then it is lost as soon as we enter the next stage unless we
adapt the allocation. We may create the best conditions for accepting orders
from the new list at the next decision epoch, if we fill the still available capacity
at t = 1 according to a Least Shift Back (LSB) principle. This boils down to
looking for already allocated capacity forward in time, starting at t = 2 , which
is replanned to t = 1 until the still available capacity at t = 1 is filled as much as
possible. Algorithm 4.2 sketches this procedure which also takes into account
the capacity perturbation p that may occur at the first stage of the planning
horizon.

For example if in a situation like in Figure 4.2 no other arrival is present, we
finish the acceptance of orders, and there still are 4 units of capacity available
at the first stage. Suppose there is a capacity perturbation on stage 1 of 1 unit

1The notation x(t : H) refers to the sub-array of x, from the t − th element up to the
H − th one.
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Figure 4.2: Allocate capacity = 5, due-time = 8

Require: c and p
available_capacity ← max(0, Cmax−max(0, c1 + p))
cH+1 ← 0
t← 2
while t ≤ H + 1 and available_capacity > 0 do
θ ← min(ct, available_capacity)
c0t−1 ← ct − θ
available_capacity ← available_capacity − θ
t← t+ 1

c0(t− 1 : H)← c(t : H + 1)
return(c0)

Algorithm 4.2: LSBp(c,p): Least Shift Back plus capacity perturbation allocation
procedure for capacity profile c and perturbation p
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of capacity (p = 1), then there are 3 units of capacity available (instead of 4),
so the 2 units at the second stage and one unit of the third stage can be shifted
back to the first stage in order not to lose that capacity, see Figure 4.3.
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Figure 4.3: There is a capacity perturbation p = 1 at the first stage of the planning
horizon. The arrows indicate the capacity that will be shifted back to the first stage in
order not to lose it

Next there is a time on, new arrivals will be collected, and the planning
horizon is moved one stage ahead as it is shown in Figure 4.4.

This approach is not a limitation for the decision policy. We conjecture that
choosing orders one by one, backward loading right after choosing and using
LSB after all arrivals are processed, constitutes the best loading strategy for
the order acceptance decision.

Cases of more realistic order acceptance problems may be studied. Nev-
ertheless this case is rich enough to demonstrate the complications that may
arise in finding an optimal decision policy.

In terms of the characterization (i)-(vi) given in Chapter 1 we have here the
following:

(i) Order definitions are based on a finite number of types of orders, where
each type has a specific expected processing time, immediate reward upon
acceptance, and a due-time. Violation of due-times is not allowed. Orders may
be split into segments that can be processed in any sequence.

(ii) Arrivals of orders take place continuously, however, arrivals are only
evaluated at discrete equidistant time moments, so we consider several arrivals
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Figure 4.4: Capacity profile at the beginning of the next planning horizon. Due to
a previous LSB the first stage is empty

in each discrete time unit (batch arrivals), and the probability of arrival is order
type dependent.

(iii) Rejection of an order only has an effect on the capacity being free for
other orders and does not affect any future arrivals.

(iv) Order processing requires an order type dependent service time from a
shared resource, realization of an order may differ from the expectation causing
a possible capacity perturbation.

(v) Capacity is considered as a unique resource, which may consist of several
parallel-servers. Orders are loaded over a planning horizon. There is a max-
imum regular capacity. It is possible to use non-regular capacity at a certain
cost, in order to avoid possible violations of due-times for the accepted orders
that may be caused by the capacity perturbations.

(vi) The decision policy should choose a set of orders from the arrival batch:
if there is no available capacity for an order, the only option is rejection for
that order.

4.2 The SMDP model

We now formally describe this problem as a semi-Markov decision problem
(SMDP). The decision moments occur during a time off and an action may
be selecting one order from the order list, or rejecting the remaining order list.
Note that in this way the action space is reduced considerably compared with
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what one should expect at first. Originally, each subset of orders from the list
that fits into the open capacity is a potential action. In this reduction the
number of actions is limited to n+ 1 possibilities. However, an extra iteration
procedure with time-off has to be introduced to facilitate this. The state at
each decision moment is defined by s = (k, c) where:

k = (k1, ..., kn) is the order list and ki represents the amount of orders of
type i requesting service.

c = (c1, ..., cH) is the capacity profile and cj is the total capacity already
allocated in stage j.

The presence of a list with ki orders of type i at a certain decision epoch
has the following joint probability distribution

Pr(k) = Pr{new_orders = (k1, ......, kn)} =
λk

k!
exp(−Λ)

where we use the shorthand notation λk = Πλkii , k! = Πki! and Λ = Σλi.

For each order type i we restrict the maximum amount of orders in the
order list to mi. This number may be determined by the arrival probabilities
or by the limited capacity. The state space S is the set of all possible states

and its cardinality is (Cmax + 1)
H

nQ
i=1

(mi + 1) in the general case.

The action space is A = {0, 1, .., n}. The set of allowed actions A(s) for a
state s = (k, c) is defined as follows. Action i ∈ [1..n] is allowed if order type
i is present in the order list and capacity is available for at least one order of
type i, rejection (i = 0) of the complete order list is always an option (i.e.,
A(s) = {i ∈ [1..n] |ki 6= 0, BL(c, i) is possible}

S
{0}).

The one step state transition from current state s is described in Table 4.1.
The first column represents all the characteristics defining a state transition
from the current state s. The other two columns represent these characteristics
given that the action i in the current state is different from rejection (second
column), and when the action is rejection (third column).

current state (s) (k, c)
action (i) i ∈ A(s), i 6= 0 0

next state (s0) (k − ei, BL(c, i)) (k0, LSBp(c, p))
d(s, i) 0 1

rew(s, i, s0) ri pen(c, p)
Pr(s, i, s0) 1 Pr(k0) Pr(p)

Table 4.1: Dynamics of transition from current state s in the shared resource model.

In case an order of type i is chosen (i 6= 0), an immediate reward ri is re-
ceived and a transition to the next state s0 occurs deterministically (Pr(s, i, s0) =
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1) with the time off, i.e., the elapsed time d(s, i) = 0. The order is then re-
moved from the order list so the new order list is given by k − ei where ei is a
vector with 1 in position i and zeros otherwise. The capacity profile is updated
with the procedure BL(c, i) as described in Section 4.1.

In case the order list is rejected (i = 0) the immediate reward is stochasti-
cally dependent on the capacity perturbation (p) and is given by the penaliza-
tion function (Formula 4.1). Now we have a time on situation with the elapsed
time d(s, 0) = 1 and we are in situation (II), where a new list of arriving or-
ders is considered. The new arrivals vector k0 is determined by the order arrival
process with statistics as described before and the function LSBp(c, p) updates
the capacity profile given the current capacity profile c and the perturbation
term p, so the transition probability depends on the arrival process and on the
capacity perturbation.

The objective is to find a deterministic policy π:

π(s) =

½
i
0

i ∈ 1...n select order type i
reject the arrival-list,

which maximizes the performance of the system. The performance of the sys-
tem is measured as the expected value of the total discounted reward. The
corresponding Bellman equation for the state value function V π is given by:

V π(s) =
X
s0

Pr(s, π(s), s0)
h
rew(s, π(s), s0) + γd(s,π(s))V π(s0)

i
, (4.2)

where γ is the discount factor and d(s, i) is the elapsed time as introduced
before. The optimal action value function Q∗ in this case satisfies:

Q∗ (s, i) =
X
s0

Pr(s, i, s0)
h
rew(s, i, s0) + γd(s,i)max

i0
Q∗(s0, i0)

i
. (4.3)

Having Q∗, an optimal policy π∗(s) can be determined by choosing the
action i ∈ A(s) that maximizes Q∗(s, i):

π∗(s) = arg max
i∈A(s)

Q∗(s, i). (4.4)

In this problem even in the case that the parameters of the model are known
(exactly or by some statistical estimation) solving the problem is still a difficult
task due to what is usually referred to as the ”curse of dimensionality”. It is
known that finding an optimal policy requires an overwhelming computational
effort if the dimension of the state space increases. Here the state space may be
tremendously large. As a consequence π∗(s) may be a complex rule. A simple
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structure ”accept if capacity is available and the reward per unit of processing
time is sufficiently high” as found in the prototype problem in Chapter 3 may
no longer be expected for the general case. What one should expect is that,
in case of low utilization of the capacity, an optimal decision rule will be in-
clined to accept more orders which generate low profit per unit of processing
time than in case of high utilization. Further, one should expect that even in
case of high utilization certain small rush orders, that fit well into a gap in
the capacity profile, are still attractive for acceptance, also if they are not so
profitable, simply because the gap is too small to accommodate other orders.
An interesting aspect of this research is to see up to what degree the learning
approach leads to an approximate decision rule representing such effects. In
Section 4.3 we introduce a general class of heuristics that is used for reasons of
comparison but also to help interpreting the policy learned by the RL-agent as
we explain in Section 4.4.1.

4.3 A general class of heuristics

Recall that we defined for each state s in S an associated decision set A(s)
of all allowed actions when in state s. However, this set A(s) is very general.
To facilitate the deduction of heuristic rules from state-action pairs properties
we introduce the following two concepts. Firstly, we consider special subsets
Ak(s) of A(s) which display certain measures like quality of orders or capacity
assurance. For example, motivated by one of the following considerations:

• orders with rewards under a certain threshold may always be rejected, so
choosing them is not an option,

• if the total capacity is occupied up to a certain level certain orders may
be rejected.

Secondly, we consider a partition of the state space S, S =
NS
j=1

Sj , with

Sj
T
Si = ∅, j 6= i. For each Sj we define Ak (Sj) =

S
s∈Sj

Ak(s). On each

Ak (Sj) we introduce a linear preference relation Â that defines a preference
relation φj of all the actions in the set. We denote with il the action in position
l with respect to this preference relation: φj = (i1, i2, ..., in, in+1) means that
i1 Â i2 Â ... Â in Â in+1 so order type i1 is preferred over order type i2, etc. A
heuristic policy π can be defined that assigns to each state s ∈ Sj , j = 1...N,
an allowed action from Ak(s) considering the defined preference relation, as
follows:

π(s) = max
φj

Ak(s), (4.5)
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i.e., π(s) is the maximum action from all the actions in Ak(s) according to the
ordering φj . Note that the given structure of the heuristic is very powerful.
On one hand the heuristic is completely defined by the subsets Ak(s), the
partition {Sj} , the orderings

©
φj
ª
and the expression (4.5). On the other

hand any policy π can be represented in this form by defining unitary subsets
Ak(s) = {π(s)}, in which case the ordering and the partition of the state space
do not matter. This means that the given structure is a characterization of
MDP policies. The RL trained agent policy can be represented in this way by

putting Ak(s) =
n
argmax

a
Q(s, a)

o
and again the ordering and the partition

of the state space are not important. But, of course, finding the subsets Ak

and the partition of the state space is just as difficult as solving the Markov
decision problem, with its curse of dimensionality.

To illustrate the flexibility of this approach for describing (and as we dis-
cuss in Section 4.4.1, finding) heuristics we consider some useful examples con-
structed by relating the ordering and subsets to relevant criteria, such as the
reward per requested unit of capacity for a job (i.e., rj

wj for job type j) and the
utilization defined as the occupied capacity as a percentage of the full capacity.
These examples do not consider the partition of the state space (for a partition
example see e.g., the set of rules in Section 4.5.1 for case 1). An example of
this sort is the optimal policy for the simple OA problem in Chapter 3.

Heuristic: Order Quality

• allowed actions for each state s ∈ S :

A1(s) =
n
i ∈ A(s)\{0}| riwi ≥ b and cap(s, i) ≤ HCmax

oS
{0}

• ordering for all actions in A:

in+1 = 0, i Â j if
³
ri
wi
≥ rj

wj

´
or
³
ri
wi
= rj

wj and ri > rj

´
.

Here cap(s, i) denotes the total occupied capacity after accepting an order
of type i when in state s. HCmax is the total capacity in the planning horizon.
According to this policy only orders with a reward per processing time above
a threshold b may be accepted. This threshold is related to the avoidance of
opportunity losses. In our experiments this sort of heuristic will be referred to
as OrderQuality(b).

Improvements of this heuristic are possible. Note that, in case of penaliza-
tion for excess capacity, it might be better to fill capacity only up to a certain
level of utilization. So there is a safety margin for dealing with perturbations
due to non-anticipated extra capacity demand during job execution. This re-
mark leads us to requiring that after acceptance of an order of type i the
capacity utilization of the total capacity in the planning horizon (HCmax) is
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still under a capacity level threshold (ρi). This leads us to the following action
subsets and ordering:

Heuristic: Capacity level

• allowed actions for each state s ∈ S :

A2(s) = {i ∈ A(s)\{0} | cap(s, i) ≤ ρiHCmax}
S
{0}

• ordering for all actions in A:

in+1 = 0, i Â j if
³
ri
wi

> rj
wj

´
or
³
ri
wi
= rj

wj and ri > rj

´
.

In our experiments this sort of heuristic will be referred to as CapacityLevel(ρ).
Note that the previous heuristic can be included here by using

ρi =

½
0, ri

wi
< b

1, ri
wi
≥ b

.

Note that a good CapacityLevel( ρ) should incorporate information about
the due-time ti into ρi. Finding a good parameter vector ρ for these heuristics
could be a difficult task. Hence we use the same parameter for all types of
orders as an initial reference to evaluate the results of the RL-agents; these
will be called one-parameter-heuristics. Then, using the policy learned by the
RL-agents, we will try to identify better parameters. It would be interesting
to see to what extent the RL-agent is able to find good parameters and even
more, to find heuristic rules that fit in the more general class of heuristics that
consider the partition of the state space. In the next section we present the
RL-approach, with an explanation on how to interpret the policies learned by
the RL-agents, and then we present some computational experiments.

4.4 Reinforcement Learning approach

Here we present the application of Reinforcement Learning to the order accep-
tance problem described before. We use QL methods that aim to approximate
the optimal Q-value function as discussed in Chapter 2. The RL-agent should
learn an OA-policy while interacting with the environment. We focus here on
traditional Q-learning as introduced in Chapter 2.

The application of this method to our model is not as straightforward as
in the previous model discussed in Chapter 3. Here the size of the state space
does not only depend on the different types of orders, but also on the number of
possible arrivals, the size of the planning horizon, and the maximum capacity.
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The size of the action space depends on the number of order types, and not all
actions being possible for each state. Here we can think of two variants.

1. The agent receives exact information about s and A(s) according to the
model description in Section 4.2. Together with the information about the
state, the agent receives the environment information about the possible
actions for that state. This implies that at each decision moment the
possibility of capacity allocation in the current capacity profile, for each
type of order present in the order list, has to be checked.

2. A change in the definition ofA(s) and consequently a change in the reward
function and the transition to the next state. The agent is allowed to
choose any of the present orders, either it fits in the capacity or not (i.e.,eA(s) = {i ∈ [1..n] |ki 6= 0}

S
{0}). Hence the original A(s) is enlarged

such that it is not necessary to check whether there is available capacity
for each type of order present in the order list. In case the agent chooses an
order that does not fit in the current capacity, the agent will be punished
with a negative reward (−ζ, ζ > 0). In this case a change has to be made
in the environment reward function to consider this punishment term:

rew(s, i, s0) =

⎧⎨⎩ ri when i 6= 0, and BL(c, i) is possible,
−ζ when i 6= 0, and BL(c, i) is not possible,
pen(c, p) when i = 0.

Another change is in the transition to the next state. In case the agent
chooses an order that does not fit in the current capacity, the order list
for the next state would not have such an order. Table 4.2 shows the new
state transition.

current state (s) (k, c)

action (i)
i 6= 0,and
BL(c, i)
is possible

i 6= 0, and
BL(c, i)

is not possible
0

rew(s, i, s0) ri −ζ, pen(c, p)
d(s, i) 0 0 1

next state (s0) (k − ei, BL(c, i)) (k − kiei, c) (k0, LSBp(c, p))
Pr(s, i, s0) 1 1 Pr(k0) Pr(p)

Table 4.2: State transition with extended A(s) definition in the shared resource model

In our approach we choose for the second variant since it is computationally
more efficient for this model.

The behavior of the RL-agent is according to an −greedy exploration rule
as explained in Chapter 2: with probability 1 − the agent chooses a greedy
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action (the action a from A(s) which maximizes Q(s, a)) and with probability
a random action. The parameter decreases over time according to the

following rule t = 0

1+ t
T
.

As for the knowledge structure, the agent uses an I − θ − 1 perceptron to
store the Q−values as discussed in Section 2.2.3. The input of the perceptron
is a codification of the state-action pair (s, a), in the following way:

• n integer inputs showing the numbers of orders of each type (k1, ..., kn).

• H integer inputs showing the already allocated capacity at each of the
capacity profile stages (c1, ..., cH).

• 1 integer input representing the action.

Using this codification for the input, the size of the ANN is (n+H+3)θ+1
which is a much lower dimension than the state and action space has in general,

|SxA| = (n + 1)(Cmax + 1)H
nQ
i=1
(mi + 1) ≥ (n + 1)2n+H . The output of the

perceptron is a single value that is the approximation of the state-action value
function Q(s, a).

The goal is to maximize the expected total discounted reward. Again we
use 0.9 as discount factor. It is reasonable to expect that the agent learns
to avoid the negative rewards, i.e., to avoid the orders that do not fit in the
capacity profile. For the parameters of the agent we use the learning schedule
as described in Section 2.3.2.

4.4.1 Interpreting the RL-agent’s policy

The policy learned by the RL-agent is implicit in the weights of the ANN and
by means of these it can be applied as a decision maker, obtaining for a given
state the corresponding action. However, it works as a black box system, not
easily interpreted by human reasoning. Having this policy explicitly, mapping
an action for each state, could computationally be very expensive since the size
of SxA grows exponentially with respect to the problem data. Furthermore,
the learning policy could be affected by noises due to infrequent states and the
use of function approximation. Therefore, a better alternative is to obtain the
general rules that the RL-agent has learned over some subsets of states.

There has been some effort to provide an explanation in a for humans
comprehensible form of the knowledge embedded in a trained ANN, by ex-
tracting rules that mimic the behaviour of the ANNs, see (Towell, 2000; Towell
& Shavlik, 1993; Andrews et al., 1995; Tickle et al., 1998).

As stated in (Tickle et al., 1998), "no compelling evidence has emerged
which mandates the use of a particular type of ANN architecture and/or a par-
ticular type of rule extraction technique in a given class of problem domains."
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In our case we use a simple data mining technique to obtain a set of rules
which match the behaviour of the trained RL-agent up to a certain degree that
defines the quality of the rules. We use as the quality of a set of rules, the
percentage of the data covered by the rules.

Based on a number of iterations using the trained RL-agent, we construct
a descriptive decision-tree splitting the iterations. Recall that we can collect
one state-action pair per iteration. Decision trees are one of the most popular
techniques in data mining because they are easily built and understood, see
(Han & Kamber, 2000). The basic idea is to make a partition of all the collected
data into nodes, and for each node to find rules describing the data on the
node. As we are using heuristics from the general class defined in Section 4.3
to compare with the RL-agent, we consider a preference relation on the type
of orders a suitable structure to describe the RL-agent’s policy at each node of
the decision tree. The partition of the set of all the data can be done based on
some characterization of the states, say for example the total amount of loaded
capacity. A set of rules with the structure of the general class of heuristics
discussed in Section 4.3, can be derived from the tree, i.e., a preference relation
of the actions over subsets of the state space. What we look for is a set of rules
like [ if s Sj then use ϕj to decide an action for s].

We define the overall tree-error E of the set of rules defined by the decision
tree as the number of iterations misclassified by the rules. We allow for a
tolerance of τ in the error E. Consequently we may measure the error Eϕ of
each node with a tolerance of τ 0. Algorithm 4.3 sketches the general framework
we use here to interpret the RL-agent’s policy.

The root node (zero level) represents all the iterations. If at that level,
a quality criterion is met, we have a unique rule defined by the preference
relation. Otherwise, a new level is added to the tree. For the OA problem
considered in this chapter we choose the total occupied capacity as a branching
variable. In our problems we generally split the root node according to possible

values of the total occupied capacity CT on the planning horizon (CT =
HP
i=1

ci).

There is a maximum of HCmax + 1 possible nodes at the first level. Again we
define a preference relation at each node on the first level. Now the rules will
be of type "IF CT = x THEN φx", where φx is the preference relation at the
node corresponding to the value x of the total capacity CT . If this set of rules
meets the quality criterion we stop, otherwise a new level is added to the tree.
The first level is split according to possible combinations in the distribution
of capacity over the planning horizon, and the same procedure is repeated. If
necessary a last third level can be added attending to possible combinations of
number of arrivals per each type of order.

As in every branching method, it is not necessary to fully expand every
level. We could choose to split the leaf representing the rule with the lowest
quality every time. We could also choose not to split by single cases but by a
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Reinforcement Learning
Perform the learning procedure and obtain a policy π
For the learned policy π perform a specific number of RL-iterations and
collect for each iteration the state s, the set A(s) of possible actions and the
chosen action a for that state

Data Mining: building a decision tree
Require: Levels of tolerance τ , τ 0

Choose a preference relation φ over all actions in A
Initialize a decision tree by taking into the root node all the RL-iterations.
Consider the root node as the current node. E ← τ + 1
while E > τ and there are alive nodes do
For each pair of actions (a, a0) determine the number of iterations in the
current node where action a was chosen when action a0 was also possible.
Determine the error Eφ in the node
Iteratively improve Eφ by swapping two actions in φ
Compute E
if Eφ < τ 0 then
backup φ, Eφ in the current node and kill the node

else
if E > τ then
choose a model parameter and branch the node. To every new node
assign φ as preference relation. Choose an alive node as the current
node.

Detection of heuristic: Extracting rules from the decision tree
For each leaf (killed node) of the final decision tree formulate an if-then
rule according to the settings in the leaf for the model parameter and the
preference relation

Algorithm 4.3: General framework to interpret the RL-agent’s learned policy
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combination of cases (interval values for total capacity for example instead of
single values). This is the same as combining similar nodes into one. Next we
explain how to define the preference relation from a set of iterations.

Preference relation

Given a number of iterations, we want to define a preference relation φ among
all the actions {0, 1, 2, ..., n} aiming to minimize the number of iterations not
covered by such a preference relation. The number of iterations not covered
by the preference relation is called the error of the preference relation. We
use an iterative approximate procedure which at every step reduces the error.
To explain the procedure, a basic concept of "matrix of actions for a given
preference relation φ", Aφ is first introduced.

The element aij of the matrix of actions Aφ for the preference relation
φ, represents the number of iterations where the action i in φ was chosen
when action j in φ was also possible, i.e., the number of times action i was
preferred over action j. From this definition it follows that the elements under
the diagonal (aij , i > j) represent violations of the preference relation. Note
however that the sum over all these elements ξ =

Pn+1
i=2

Pi−1
j=1 aij is an upper

bound on the total number of erroneous iterations Eφ. If the preference
relation φ would represent all the iterations, the matrix Aφ would be an upper
triangular matrix (i.e., aij = 0, i > j).

Our iterative procedure moves from one preference relation to another so
that the upper bound ξ is decreased. A new preference relation is obtained
swapping the actions in position i and position j when

jX
k=i+1

aik <

jX
k=i+1

aki for i < j. (4.6)

In this case the new upper bound would be ξ0 = ξ+
jP

k=i+1

(aik−aki). No further

improvement is possible if one of the following conditions holds:

• condition (4.6) does not hold for any two i, j

• all the elements above the main diagonal in Aφ are greater than their
symmetric counterpart.

The complete swapping procedure is sketched in Algorithm 4.4.

Since the successive values of ξ are always decreasing there is guarantee that
there are no cycles. Although the total number of iterations is not polynomial,
since in the worst case we should analyze all permutations of the actions, in
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Require: an arbitrary initial preference relation φ
Require: the matrix of actions Aφ of size (n+ 1, n+ 1)
repeat
for i = 1 to n do
for j = i+ 1 to n+ 1 do

if
jP

k=i+1

aik <
jP

k=i+1

aki then

swap action in position i with action in position j and update Aφ

until all elements under the diagonal are smaller than their symmetric coun-
terpart or no any change is made in a cycle

Algorithm 4.4: Swapping procedure to find a preference relation φ with small errors

practice we use an initial preference relation that guarantees the stopping con-
dition of the swapping procedure in few iterations (see Algorithm 4.5). In the
procedure the sum over all elements in the column j except ajj represents the
number of iterations in which the action in position j of the preference relation
φ0 was possible but not chosen. The smaller this value, the higher preference
is given to the action.

Require: an arbitrary initial preference relation φ0

Require: the matrix of actions Aφ0 of size (n+ 1, n+ 1)
for i = 1 to n+ 1 do
φ(i)← argmin

j

P
k 6=j

akj

Eliminate column and row φ(i) from Aφ0

Algorithm 4.5: Procedure to define an initial preference relation φ before swapping

4.5 Experimental results

In this section we present the application of RL methods, as discussed in Chap-
ter 2, to four cases of the OA in the single resource model presented in this
chapter. In all cases we consider Poisson arrivals, and discount factor γ = 0.9.
Table 4.3 shows the data of the four cases.

The first column represents all the characteristics defining an instance of
the model, characteristics defining the type of orders and the capacity profile.
Each case is in a column. When some cases share the same characteristics, the
cells corresponding to those characteristics have been merged in the table.

All cases have 5 types of orders. In the first case all types of orders are
very similar, they only differ in the reward for acceptance; and there is no
capacity perturbation. The second case is a variation of the first case where
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Case 1 Case 2 Case 3 Case 4
n 5
λ (0.2, 0.2, 0.2, 0.2, 0.2) (0.4, 0.4, 0.4, 0.4, 0.4) (0.1, 0.1, 0.1, 2, 2)
m (2, 2, 2, 2, 2) (1, 1, 1, 6, 6)
t (5, 5, 5, 5, 5) (3, 3, 3, 5, 5)
w (3, 3, 3, 3, 3) (3, 6, 1, 1, 2)
r (3, 6, 9, 12, 15) (12, 18, 5, 1, 2)

r/ω (1, 2, 3, 4, 5) (4, 3, 5, 1, 1)
H 5

Cmax 2 3
p - (0, 1) - (−1, 0, 1)

Pr(p) - (0.2, 0.8) -
¡
1
3 ,

1
3 ,

1
3

¢
η - 6 - 9
|S| 59049 401408

|S ×A| 354294 2408448

Table 4.3: Data of the cases in the shared resource model
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there is an increase in the flow of orders (higher arrival frequency) and there
is also capacity perturbation. The last two cases introduce a higher variation
between the types of orders, no one characteristic is the same for all types
of orders. Both cases are very similar but the third case does not consider
capacity perturbation. Since these two last cases consider more arrivals, and
more capacity, they have larger state spaces than the first two cases.

In all cases we compare the results of the RL-agents against the general one-
parameter-heuristics as presented in Section 4.3. As a performance measure we
use a different measure than the measures we used in Chapter 3. Since in that
case we have the optimal policies to compare with, we use the MSE-Qπt to
evaluate the learned RL-policy. Here we want to use an average reward related
measure to evaluate the learned RL-policy, but the measure AvToRewt as used
in Chapter 3 says more about the evolution of the learning process than about
the final result of the learning. In order to evaluate the learned policy in this
chapter we use AR20000, defined as the total average reward accumulated per
unit of time up to the time corresponding to iteration 20000 following only the
learned RL-policy. Furthermore, we apply the technique explained in Section
4.4.1 in order to interpret the policy learned by the RL-agents.

We use one-way ANOVA test to compare the performance of different poli-
cies. We obtain for each policy the performance on five independent samples
of this case. One-way Anova tests are useful to compare the means of indepen-
dent sample distributions. We look at two indicators: F and Pr. Large values
of F indicates that the variation among the sample means is large relative to
the variation within the sample and hence the null hypothesis of equal means
should be rejected. Pr indicates whether the value of F is large enough to
reject the null hypothesis, it gives the probability that we are mistaken when
rejecting the hypothesis of equal means. So here we consider that Pr ≤ 0.05
shows significant evidence against the equality of the means.

4.5.1 Case 1

In this case all types of orders are equal except for the reward upon acceptance.
Table 4.4 shows the data for this case.

orderi λi wi ti mi ri
ri
wi

Capacity
profile

1 0.2 3 5 2 3 1
2 0.2 3 5 2 6 2 H = 5
3 0.2 3 5 2 9 3 Cmax = 2
4 0.2 3 5 2 12 4
5 0.2 3 5 2 15 5

Table 4.4: Data of case 1 in the shared resource model
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Good policies in this case could be like the type of parametric heuristics we
introduced before. As we mentioned, we first try these one-parameter heuristics
that use the same parameter for all types of orders. Table 4.5 summarizes the
results of these heuristics. The best of these heuristics is OrderQuality(2)
which chooses orders with reward per capacity-request over 2, so this heuristic
never chooses orders of type 1.

scenario AR20000
greedy 6.28
OrderQuality(2) 6.61
OrderQuality(3) 6.42
OrderQuality(4) 5.26
OrderQuality(5) 2.97
CapacityLevel(0.9) 6.22

scenario AR20000
CapacityLevel(0.8) 6.16
CapacityLevel(0.7) 5.99
CapacityLevel(0.6) 5.82
CapacityLevel(0.5) 5.58
CapacityLevel(0.4) 5.18
CapacityLevel(0.3) 3.94

Table 4.5: Performance of some heuristics for case 1 in the shared resource model

Table 4.6 shows the results and the parameters for the RL-agents trained
in this case. The parameters correspond to the learning schedule as described
in Section 2.3.2. This schedule defines the number of hidden neurons (θ),
the number of iterations of the training process (T ), the initial value of the
learning and exploration rates (α0, 0), and the parameters for the learning
and exploration rates-decreasing functions (Tα, T ). These parameters are
chosen through experimental experience and are by no means optimized.

θ T α0 Tα 0 T AR20000
1 50 2× 104 10−3 2× 103 1 2× 103 6.572
2 100 3× 104 10−3 3× 103 1 3× 103 6.658
3 150 5× 104 10−3 5× 103 1 5× 103 6.703
4 150 105 10−3 104 1 104 6.711
5 250 105 10−3 104 1 104 6.732
6 300 105 10−3 104 1 104 6.733
7 350 105 10−3 104 1 104 6.751

Table 4.6: Parameters and performance of some RL-agents in case 1 of the shared
resource model

Except the first RL-agent, all the others outperform the heuristicOrderQual-
ity(2). Table 4.7 shows the results of a one-way ANOVA test with the Or-
derQuality(2) heuristic and the last four RL-agents, each simulated using five
independent samples of this case.

The table shows significant evidence against the equality of the performance
of the RL-agents and the OrderQuality(2) heuristic (Pr=0.0439). However,
there is not sufficient evidence to reject the equality in the performance of the
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RL-agents (Pr=0.415). This reveals that adding more hidden neurons than 150
does not really help to improve the performance of an RL-agent in this case.

OrderQuality(2)+RL-agents RL-agents
F Pr F Pr

2.985 0.0439 1.007 0.415

Table 4.7: Results of a one-way ANOVA test for some RL-agents and the heuristic
OrderQuality(2) in case 1 of the shared resource model

The best RL-agent outperforms the heuristic OrderQuality(2) by 2.12%,
but what has this RL-agent learned? In order to answer this, we applied the
simple data mining technique we explained in Section 4.4.1.

Interpreting the learned RL-policy

Using the preference relation φ = (5, 4, 3, 2, 1, 0) defined by the profitability ri
wi

of the types of orders and 20000 iterations from the trained agent, we obtain
the matrix Aφ as shown in Table 4.8.

Selected Possible Actions
Actions 5 4 3 2 1 0

5 2859 135 209 438 500 2859
4 368 2738 210 374 485 2738
3 276 284 2513 365 485 2513
2 89 104 98 1453 336 1453
1 0 0 1 0 312 312
0 60 19 30 734 1768 10125

Table 4.8: Selected action against possible actions in 20000 iterations of the RL-
agent in case 1 of the shared resource model

To illustrate the meaning of the table let us look at the number 284 at entry
(3, 2). It means that action 3 was selected 284 times when action 4 was also
possible. The number 284 also represents violations of the actual preference
relation in which action 4 has a higher preference than action 3.

Using the procedure to obtain an initial preference relation in the root (Al-
gorithm 4.5 ) we obtain the preference relation (4,3,5,2,1,0) and in some steps
of the swapping procedure (in Algorithm 4.4) we obtain the best preference
relation for the zero level of the decision tree φ0 = (3,4,5,2,0,1). Given higher
priority to action zero (rejection) than to action 1 means that action 1 would
never be taken following a heuristic defined by that preference relation since
action zero is always possible. In any case the type of order 1 is the lease prof-
itable type of orders. In the sequel we will not write in the preference relation
the actions with less preference than action 0.
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Figure 4.5: One level decision tree representing an approximation to the RL-policy
in case 1 of the shared resource model. The set of rules represented by this tree has a
quality of 96.42% and the correspondent heuristic achieves a performance of 6.70

In this case one may think that a better preference relation than φ0 is for
example φ0 =(5,4,3,2,0) which accepts all orders except orders of type 1 using
their profitability as a preference relation. This is true in the class of heuristics
defined only by a preference relation. Let us call these heuristics Priority(φ)
when they are just defined by the preference relation φ. Note that Priority(φ0)
is exactly the heuristic OrderQuality(2). Table 4.9 shows the performance of
the heuristics and the errors of the rules with respect to the RL-policy when
following these two preference relations.

preference relation AR20000 errors
Priority(φ0) 6.43 1922
Priority(φ0) 6.61 2289

Table 4.9: Results of 2 preference orders in case 1 of the shared resource model

Although Priority(φ0) has a better performance, Priority(φ0) has fewer
errors with respect to the RL-policy (90, 39% of quality). Priority(φ0) rep-
resents only the level zero of the tree, next we can continue splitting the tree
using the total occupied capacity CT as the splitting parameter. Figure 4.5
shows a decision tree with another level. Each node has four rows; the descrip-
tion of the node, the number of transitions covered by the node, the preference
relation, and the number of errors (between parentheses the percentage of the
error).

The leaves of the tree represent the following set of rules:
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1. If CT ≤ 1 then the preference relation is (2, 3, 4, 5, 1, 0),
2. if 2 ≤ CT ≤ 4 then the preference relation is (3, 4, 5, 2, 0),
3. if CT = 5 then the preference relation is (4, 5, 3, 2, 0),
4. if 6 ≤ CT ≤ 7 then the preference relation is (5, 4, 3, 0),
5. if 8 ≤ CT ≤ 10 then reject.
This set of rules has an error of 716 which gives a quality of 96.42% repre-

senting the RL-policy. Note that the preference relation is mainly related to
the relation in which orders are chosen one at a time. Choosing less profitable
orders when the utilization of capacity over the planning horizon is low, in the
first rules, is the way of choosing these orders up to some point, it does not
mean that the more profitable orders will be rejected since according to the
other rules, they will be chosen in the sequel.

According to the values of CT , the heuristic represented by the decision tree
is similar to the heuristic CapacityLevel(0.4,0.8,1,1,1). This heuristic chooses
orders of type 1 if the capacity is kept up to a 40% of the total capacity and
there is no other type of order. Orders of type 2 are chosen if the capacity is
kept up to an 80% of the total capacity and there are no orders of types 3, 4
and 5. For the other three types of orders there is no restriction on capacity,
they will be chosen according to a preference relation (5,4,3). This heuristic
CapacityLevel(0.4,0.8,1,1,1) achieves an AR20000 of 6.76. A one-way ANOVA
test with the heuristic CapacityLevel(0.4, 0.8, 1, 1, 1) and the RL-agent on five
independent samples of this case shows that there is not sufficient evidence to
reject the equality of the average rewards for both agents (F=0.03, Pr=0.87).

This case shows how an RL-agent is able to learn a more complex policy
than in the previous chapter, not only a preference relation for the types of
orders but a recognition of the different situations according to the utilization
of capacity over the planning horizon.

4.5.2 Case 2

In this case we introduce capacity perturbation and in order to be able to
appreciate the effects of the capacity perturbation, we also increase the flow of
orders.

orderi λi wi ti mi ri
ri
wi

1 0.4 3 5 2 3 1
2 0.4 3 5 2 6 2
3 0.4 3 5 2 9 3
4 0.4 3 5 2 12 4
5 0.4 3 5 2 15 5

Capacity profile
H=5
Cmax = 2

Pr(p) =

½
0.2 p = 0
0.8 p = 1

η = 6

Table 4.10: Data case 2 in the shared resource model
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Table 4.11 summarizes the results of the one-parameter heuristics. The best
of these heuristics is OrderQuality(4) which only chooses orders with reward
per capacity-request from 4, so this heuristic only chooses orders of type 4 and
5.

scenario AR20000
greedy 2.738
OrderQuality(2) 3.254
OrderQuality(3) 3.877
OrderQuality(4) 4.614
OrderQuality(5) 4.597
CapacityLevel(0.9) 3.21

scenario AR20000
CapacityLevel(0.8) 3.79
CapacityLevel(0.7) 4.12
CapacityLevel(0.6) 4.33
CapacityLevel(0.5) 4.49
CapacityLevel(0.4) 4.4
CapacityLevel(0.3) 4.07

Table 4.11: Performance of some heuristics for case 2 in a shared resource

Table 4.12 shows the results and the parameters for the RL-agents trained
in this case.

θ T α0 Tα 0 T AR20000
1 100 4× 104 10−3 4× 103 1 4× 103 4.719
2 100 5× 104 10−3 5× 103 1 5× 103 4.740
3 100 6× 104 10−3 6× 103 1 6× 103 4.753
4 100 7× 104 10−3 7× 103 1 7× 103 4.766
5 100 8× 104 10−3 8× 103 1 8× 103 4.722
6 250 12× 104 10−3 12× 103 1 12× 103 4.769

Table 4.12: Parameters and performance of some RL-agents in case 2 of the shared
resource model

All RL-agents outperform the heuristic OrderQuality(4). Table 4.13 shows
the results of a one-way ANOVA test on five independent samples of this case
for the best three RL-agents and the Heuristic OrderQuality(4). The first
part of the table shows strong evidence against the equality of all these agents’
average reward. However the second part of the table show that there is not
sufficient evidence to reject the equality of the average reward from these best
three RL-agents.

OrderQuality(4)+ best three RL-agents best three RL-agents
F Pr F Pr

57.05 7.423345×10−7 0.0265 0.8840896

Table 4.13: Results of a one-way ANOVA test for the best three RL-agents and the
heuristic OrderQuality(4) in case 2 of the shared resource model
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Figure 4.6: One level decision tree representing an approximation to the RL-policy
in case 2 of the shared resource model. The set of rules represented by this tree has a
quality of 87.42% and the heuristic achieves an average reward of 4.84

Interpreting the learned RL-policy

Here we analyze the policy learned by the last RL-agent represented in Table
4.12 using 20000 iterations from this trained agent. After the initialization
procedure for the preference relation, no further improvement was possible and
we obtained at zero level the preference relation (5,4,0) with 4051 errors which
makes 79.5% of quality. This is exactly the heuristic OrderQuality(4). Adding
a new level according to the total capacity, we obtain 2531 errors and 87.4% of
quality, see Figure 4.6.

However from this level one can notice how the tendency of the RL-agent
is to be more careful using capacity. Note that utilization of capacity over the
planning horizon is kept under 90% which helps avoiding penalization for using
extra capacity when capacity perturbation occurs. A heuristic following the
set of rules represented by this tree achieves an AR20000 of 4.84 which is 1.77%
better than the performance of the RL-agent. According to the values of C,
this heuristic is similar to the heuristic CapacityLevel(0, 0.4, 0.5, 0.8, 0.9) which
achieves an AR20000 of 4.96. A one-way ANOVA test for the heuristic Capac-
ityLevel(0, 0.4, 0.5, 0.8, 0.9) and the RL-agent on five independent samples of
this case shows that there is very strong evidence to reject the equality of the
average rewards for both agents (F = 270.13, Pr = 1. 9× 10−7).
This case shows how an RL-agent is able to learn a good policy even under

capacity perturbations, when some capacity must be kept free not only waiting
for better opportunities to accept the more profitable orders, but also to avoid
penalizations for using extra capacity. The analysis of what the RL-agent had
learned, guided us to find better heuristics. We believe that by training other
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RL-agents we can continue improving the performance.

4.5.3 Case 3

In this case there is higher variation between orders of different types. The
more profitable orders are of type 3, 1 and 2 in that order. However these are
also the less frequent type of orders and with the smallest due-time.

orderi λi wi ti mi ri
ri
wi

Capacity profile
1 0.1 3 3 1 12 4
2 0.1 6 3 1 18 3 H=5
3 0.1 1 3 1 5 5
4 2 1 5 6 1 1 Cmax = 3
5 2 2 5 6 2 1

Table 4.14: Data case 3 in the shared resource model

Table 4.15 summarizes the results of the one-parameter heuristics for this
case. The best of these heuristics is CapacityLevel(0.6) which only chooses
orders if the capacity utilization is kept under 60% of the total capacity in the
planning horizon.

scenario AR20000
greedy 3.138
OrderQuality(3) 3.192
OrderQuality(4) 1.646
OrderQuality(5) 0.479
CapacityLevel(0.9) 3.612
CapacityLevel(0.8) 4.098

scenario AR20000
CapacityLevel(0.7) 4.217
CapacityLevel(0.6) 4.255
CapacityLevel(0.5) 4.252
CapacityLevel(0.4) 4.242
CapacityLevel(0.3) 4.113
CapacityLevel(0.2) 3.749

Table 4.15: Performance of some heuristics for case 3 in a shared resource model

Table 4.16 shows the results and the parameters for the RL-agents trained
in this case.

All RL-agents outperform the heuristic CapacityLevel(0.6) and the best of
these RL-agents improves it by 21,1%. Table 4.17 shows the results of a one-way
ANOVA test on five independent samples of this case for the best three RL-
agents and the heuristic CapacityLevel(0.6). The results show strong evidence
against the equality of all these agents average reward. However there is not
sufficient evidence to reject the equality of the average reward of the best three
RL-agents.
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θ T α0 Tα 0 T AR20000
1 50 3× 104 10−3 3× 103 1 3× 103 4.627
2 100 7× 104 10−3 7× 103 1 7× 103 5.103
3 150 10× 104 10−3 10× 103 1 10× 103 5.107
4 200 12× 104 10−3 12× 103 1 12× 103 5.161
5 250 14× 104 10−3 14× 103 1 14× 103 5.152
6 300 16× 104 10−3 16× 103 1 16× 103 5.174

Table 4.16: Parameters and performance of some RL-agents in case 3 of the shared
resource model

CapacityLevel(0.6)+ best three RL-agents best three RL-agents
F Pr F Pr
1148 5.107×10−15 0.8892 0.448

Table 4.17: Results of a one-way ANOVA test for the best three RL-agents and the
heuristic CapacityLevel(0.6) in case 3 of the shared resource model

Interpreting the learned RL-policy

Here we analyze the policy learned by the last RL-agent represented in Table
4.16 using 20000 iterations from this trained agent. After the initialization pro-
cedure, no further improvement was possible and we obtained at zero level the
preference relation (2,3,1,4,0) with 6327 errors which makes 68.4% of quality.
Adding a new level according to the total capacity levels to the decision tree,
it makes 3306 errors and 83.5% of quality, see Figure 4.7.

A heuristic following the set of rules represented by this tree achieves an
AR20000 of 5.179, very close to the performance of the RL-agent. According
to the values of C, this heuristic is similar to the heuristic CapacityLevel(0.8,
0.9, 1, 0.4, 0.4) which achieves an AR20000 of 5.175. A one-way ANOVA test
for the heuristic CapacityLevel(0.8, 0.9, 1, 0.4, 0.4) and the RL-agent on five
independent samples of this case shows that there is not significative evidence
to reject the equality of the AR20000 for both agents (F = 2.73, Pr = 0.1371).

This case shows that an RL-agent is able to learn a good acceptance policy
in a case with more variation in the characteristics of the different types of
orders.

4.5.4 Case 4

This case is a variation on case 3 introducing capacity perturbation, see the
data in Table 4.18.

Table 4.19 summarizes the results of the one-parameter heuristics. The
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Figure 4.7: One level decision tree representing an approximation to the RL-policy
in case 3 of the shared resource model. The set of rules represented by this tree has a
quality of 83.52% and the heuristic achieves a performance of 5.179

orderi λi wi ti mi ri
ri
wi

1 0.1 3 3 1 12 4
2 0.1 6 3 1 18 3
3 0.1 1 3 1 5 5
4 2 1 5 6 1 1
5 2 2 5 6 2 1

Capacity profile
H=5
Cmax = 3

Pr(p) =

⎧⎨⎩
1
3 p = −1
1
3 p = 0
1
3 p = 1

Table 4.18: Data case 4 in the shared resource model

best of these heuristics is CapacityLevel(0.6) which only chooses orders if the
capacity utilization is kept under 60% of the total capacity in the planning
horizon.

Table 4.20 shows the results and the parameters for the RL-agents trained
in this case.

All RL-agents outperform the heuristic CapacityLevel(0.6). Table 4.21
shows the results of a one-way ANOVA test on five independent samples of
this case for the best three RL-agents and the Heuristic CapacityLevel(0.6).
The table shows strong evidence against the equality of all these agents aver-
age reward. However there is not sufficient evidence to reject the equality of
the average reward from the RL-agents.

Interpreting the learned RL-policy

Here we analyze the policy learned by the last RL-agent represented in Table
4.20 using 20000 iterations from this trained agent. After the initialization pro-
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scenario AR20000
greedy 1.231
OrderQuality(3) 3.083
OrderQuality(4) 1.646
OrderQuality(5) 0.479
CapacityLevel(0.9) 3.037
CapacityLevel(0.8) 3.392

scenario AR20000
CapacityLevel(0.7) 3.71
CapacityLevel(0.6) 3.735
CapacityLevel(0.5) 3.727
CapacityLevel(0.4) 3.718
CapacityLevel(0.3) 3.636
CapacityLevel(0.2) 3.37

Table 4.19: Performance of some heuristics for case 4 in a shared resource model

θ T α0 Tα 0 T AR20000
1 50 2× 104 10−3 2× 103 1 2× 103 4.437
2 100 6× 104 10−3 6× 103 1 6× 103 4.617
3 150 8× 104 10−3 8× 103 1 8× 103 4.668
4 200 11× 104 10−3 11× 103 1 11× 103 4.728
5 250 13× 104 10−3 13× 103 1 13× 103 4.712
6 300 16× 104 10−3 16× 103 1 16× 103 4.794

Table 4.20: Parameters and performance of some RL-agents in case 4 of the shared
resource model

cedure, no further improvement was possible and we obtained at zero level the
preference relation (1,2,3,4,0) with 6362 errors which makes 68.2% of quality.
Adding a new level according to the total capacity levels to the decision tree,
it makes 2022 errors and 89.9% of quality, see Figure 4.8.

A heuristic following the set of rules represented by this tree achieves an
AR20000 of 4.77. According to the levels of capacity, this heuristic is similar
to the heuristic CapacityLevel(0.8, 0.75, 0.4, 0.35, 0.4) which also achieves an
AR20000 of 4.77. A one-way ANOVA test for the heuristic CapacityLevel(0.8,
0.75, 0.4, 0.35, 0.4) and the RL-agent on five independent samples of this
case does not show significative evidence to reject the equality of the average
rewards for both agents (F = 3.46, P = 0.1).

This case shows that an RL-agent is able to learn a good acceptance policy
in a case with more variation in the characteristics of the different type of orders
and with capacity perturbation.

4.6 Conclusions

This chapter discussed the application of RL for OA in a shared resource model.
We have defined a general class of heuristics for the OA problem. These heuris-
tics are also used in the next chapters for more complex models. Particularly we
used two type of parametric heuristics OrderQuality(b) and CapacityLevel(ρ).
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CapacityLevel(0.6)+ best three RL-agents best three RL-agents
F Pr F Pr

157.6 6.66×10−10 0.02 0.82

Table 4.21: Results of a one-way ANOVA test for the best three RL-agents and the
heuristic CapacityLevel(0.6) in case 4 of the shared resource model

Figure 4.8: One level decision tree representing an approximation to the RL-policy
in case 4 of the shared resource model. The set of rules represented by this tree has a
quality of 89.1% and the heuristic achieves a performance of 4.77

The heuristics are used as a means of measuring the RL performance. However,
unlike the RL, the heuristics need to have complete information in order to be
defined. We have shown that training RL-agents is a good alternative to obtain
good OA policies. We presented four different cases, with different degrees of
complexity. In all the cases we obtained RL-agents that outperform the simple
heuristic rule always accept and the best of the one-parameter-heuristics. Min-
ing data from the trained RL-agents’ knowledge, we could interpret the solution
found by the RL-agents. We define here a general framework to interpret the
learned RL-policy. Using decision trees we obtained an interpretation of the
learned RL-policy as the general parametric heuristics we previously defined.
So the RL-approach helped as well to find good parameters for the general class
of parametric heuristics.

It is questionable whether using some more sophisticated data mining al-
gorithms we could find better interpretations of the RL-policies, but it goes
beyond the boundaries of this research. Furthermore we believe that training
other RL-agents we could continue improving the performance. Using the re-
sults of the trained RL-agents in this model, we will define a methodology for
tuning the RL-parameters in the next chapter.
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Chapter 5

OA in a multiresource
server

In this chapter we consider an extension of the model from the previous chapter.
The difference with respect to the orders is that each order consists of a set
of jobs which need to be performed on different resources following a specific
route. So the difference with respect to the capacity is that here the server
system is a multiresource server.

Since the allocation of capacity is a more complex task here, we use an
integrated simulation environment defined by Ebben, Hans and Olde Weghuis
(OldeWeghuis, 2002; Ebben et al., 2005). In such an environment, a tentative
loading plan is used for reactive scheduling. Reactive scheduling is commonly
used under uncertainty, when the existing schedule is updated using new avail-
able information. The tentative loading plan is also used to support the OA
decisions. In Section 5.1 we explain these ideas in more detail and in Section
5.2 we present the SMDP approach. In Section 5.3 we discuss the application
of RL to this problem and present a methodology for tuning the RL-agents.
The experimental results are presented in Section 5.4 where the performance
of the best RL-agents is compared with some OA Heuristics. Data Mining is
used for a better understanding of what the RL-agents learn. Descriptive rules
help to interpret the learned knowledge and to elaborate more sophisticated
OA heuristics. Finally in Section 5.5 we draw some conclusions.

5.1 Problem description

The arrival and collection of orders occur in similar ways as in the previous
chapter. The orders arrive continuously but they are collected upon arrivals and
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they are only processed at discrete equidistant moments: decision moments.
Here again we consider aggregate batch arrivals.

In this chapter we consider a larger order’s attribute set than in the previous
chapter, specifically we include the route of the order. In general order defin-
itions are based on a finite number n of order types that arrive continuously
over time. Each order asks for service on a server with M different resources.
Order i consists of a set Oi of ni jobs which have to be performed in a pre-
determined routing. The jobs in Oi (Oi = {Jij |j = 1, 2..., ni}) define a fixed
routing σi as a linear precedence relation. A routing σi is a sequence of pairs
(Rij , Bij) where Rij is the resource and Bij is the processing time distribution
with mean βij , of job Jij (σi = ((Ri1, Bi1)..(Rini , Bini)) ). Order i is charac-
terized by the arrival rate (λi), due-time ( ti), a routing ( σi) and generates
an immediate reward (ri) upon acceptance. Here we use the same due-time
concept as explained in Chapter 4. Note that for reasons of transparency ti
can be measured in different units, e.g. in hours or in stages over the planning
horizon. In this chapter we express ti in the same time units as we express the
processing times.

Allocation of orders in this chapter is considered in a different way than
in the previous chapters. Again we use a fixed prescription, but in order to
give more flexibility with respect to the capacity planning and the uncertainty
here in, we consider the resequencing problem. The resequencing problem is
about rescheduling: every time an order is accepted a new tentative loading
plan is made with all the accepted orders, see (Pinedo & Chao, 1999). In the
previous chapters capacity is reserved when an order is accepted and this as-
signment is not changed afterwards. Here capacity allocation is made following
the tentative loading plan, but when a new order is accepted we construct a
new loading plan including the new order. The actual realization of the plan is
one job at a time per resource, see (Ebben et al., 2005). We believe this gives
more flexibility for the future allocation of high priority orders.

Order acceptance has to be planned at each resource over a planning time
horizon with H stages. Each stage spans the time between two decision epochs.
There is a maximum capacity Cmax for all stages at each resource that can only
be excessed at the cost of a penalty as we explain below. The MxH matrix L
describes the capacity utilization according to the tentative loading plan. L is
called the loading profile. Figure 5.1 shows an example of capacity utilization
according to a loading plan in a planning horizon with H = 5 stages, M = 2

and Cmax = 8 where L =
µ
3 4 4 8 3
6 3 3 6 5

¶
.

The orders in the system are disaggregated into their jobs. In order to
compute the tentative loading plan we keep a list of all accepted jobs which
are waiting to be processed: the job list (JL). Per each job we keep a record
with the following information (Job_id, release date, due-date, predecessor,
successor, resource, expected processing time, active).
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Figure 5.1: Capacity utilization according to a loading plan in a planning horizon
with H = 5 stages, M = 2 and Cmax = 8

We compute the release date and the due-date of job Jij given the current
time using the following formulas:

Jij .release_date = current_time+

j−1X
k=1

βik

Jij .due_date = current_time+ ti −
niX

k=j+1

βik

The active entry is a boolean which indicates whether a job is available to be
processed. This entry is true for all first jobs of an order and for all jobs of
which the predecessor has been already served.

To compute the loading plan we use an Earliest due-date (EDD) rule with
the jobs in the job list and information about the jobs that are being processed
at each resource. In the sequel the MxH matrix EP describes the capacity
utilization of the jobs that are being processed at the current stage at each
resource, see Figure 5.2. EP is called the execution profile. Jobs in EP can
not be rescheduled. The jobs in the job list are prioritized according to their
due-dates. Whenever a resource is freed, the job with the earliest due-date
from the active jobs, is selected to be processed next. Due to its simplicity
the EDD rule is very popular, furthermore "this rule tends to minimize the
maximum lateness among the jobs waiting for processing", see (Pinedo, 2002).
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Since the resequencing problem cares for the utilization of capacity in a flexible
way we use here a forward loading approach instead of the backward loading
used in the previous chapter. Forward loading means: start loading at the first
stages of the planning horizon and continue forward.

5.1.1 OA decision

At every decision moment a decision must be taken on the collected orders.
By contrast with Chapter 4 we do not allow preemption of jobs. Late delivery
is also not an option. Given the list of arrivals we impose that the OA decision
is created sequentially instead of focussing on all possible subsets of accepted
orders at once. The orders are chosen from the arrival list one by one while
we call a time off at each decision moment. The tentative loading plan is also
used to support the OA decision. In order to know if a chosen action fits in the
capacity profile, the order is temporarily added to the job list. If a new loading
plan can be made with all the previously accepted orders and a new arriving
order such that no order is late, then the given order fits in the capacity, thus
accepting the order is an option. When the available capacity is not sufficient
for an arriving order, the only option is rejection for that order and the order
is deleted from the job list.

Each single decision in the sequence during the time off is either the se-
lection of one of the orders from the list or the rejection of all of them. If we
choose an order, it is moved from the list of arrivals to the list of accepted
orders into the job shop. If we reject, the decision process at the current time
is finished with the consequent time on. The rejected orders are out of the
system.

5.1.2 The tentative loading plan

The tentative loading plan is built during the time off in order to support the
OA decision. In constructing the tentative loading plan jobs are removed one
by one from the job list according to the EDD priority. The jobs removed from
the job list are planned in the loading profile.

As in a simulation approach we consider the occurrence of events that change
the system. We define two events: the release of a job (release event) and the
completion of a job on a resource (completion event). The event list handles
the occurrence of the events.

The release of a job means that this job becomes active in the job list : it
can be loaded from now on. When a job is released we have to check whether it
can be started. We can start job j when the corresponding resource is available
and job j is the job with the earliest due-date. If a job is released but can not
be started we handle this event by doing nothing.
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The completion of a job j on a resource causes the resource to be available
again; a new job can be started on this resource. At the same time, the
possible successor of job j can be released. Here we describe the procedure in
more detail. First some notation:

lt: loading time, i.e., the simulation clock, it keeps track of the value of
simulated time while building the tentative loading plan.

J : the subset of the job list consisting of all unplanned jobs that still have
to be processed.

JA: the subset from the unplanned jobs J which are already released at
loading time, i.e., the set of active jobs at loading time.

The following steps describe the making of the loading plan.

Step 0. Initialization:

• Set lt equal to 0.

• Set the event list empty

• Set J equal to the job list.

• Determine the initial set of active jobs, JA: all jobs in J with release_date
≤ lt for which the preceding jobs have been finished.

• Add the completion times of the jobs that are in process to the event list.
If no job is in process on a resource, add a completion event of a dummy
job in the resource to the event list with time lt (this is equivalent to
having a resource idle event).

• Add the release times of the first job of all orders to the event list (only
if release time > lt , i.e., release is still in the future).

Step 1: Handling events:

Sort the event list on time. Take the first event from the event list and
set the loading time lt equal to the time of this event. When there are more
events scheduled at the same time, add all jobs that will be released as a result
of these events to the active job set JA. Otherwise the loading might depend
on the order of appearance of the events in the event list. In case of a release
event go to Step 2, in case of a completion event go to Step 3, else (no more
events) go to Step 4.

Step 2: Release event

Suppose job Jij is released on resource Rij :

Add job Jij to JA if not added already in Step 1 or 3. Determine whether
resource Rij is available and whether job Jij is the highest priority job in JA
on resource Rij (earliest due-date). When the resource Rij is available and job
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Jij is the highest priority job, plan job Jij on resource Rij , add a completion
event to the event list with time lt + βij and remove job Jij from J and JA.
Update the profile of resource Rij . Remove current event from event list. Go
to Step 1.

Step 3: Completion event

Suppose job Jij is completed on resource Rij .

When job Jij has a successor, add release event of the successor of job Jij
to the event list with time lt and add the successor directly to JA. Select
highest priority job from JA that has to be processed on resource Rij . If such
a job is found, plan this job Jkl on resource Rkl (Note that Rkl = Rij), add a
completion event to the event list with time lt+βkl and remove job Jkl from J
and JA. Update the profile of resource Rkl. Remove current event from event
list. Go to Step 1.

Step 4: Stop:

All jobs have been loaded (sets J and JA are empty). Check the completion
time of all orders. If there is at least one late order conclude that the EDD
loading with no late orders is not possible.

In making the tentative loading plan we mention the update of the profile.
When job Jij is planned the loading profile of the corresponding resource is
updated according to a forward loading procedure, see Algorithm 5.1.

Require: Jij and L
t← lt
remaining_time = βij
L0 ← L
while t ≤ ti and remaining_time 6= 0 do
ξ ← min(remaining_time,Cmax− L(Rij , t))
L0(Rij , t)← L0(Rij, t) + ξ
remaining_time← remaining_time− ξ
t← t+ 1

if remaining_time 6= 0 then
return( not possible )

else
return(L0)

Algorithm 5.1: FL (L,Jij,lt): Forward loading procedure for job type Jij in a
loading profile L at time lt

The tentative loading plan is used to support the OA decision during the
time off, but it might also be used during the time on. This may happen
because the actual realization of the orders during the time on could cause a
capacity perturbation which requires a new loading plan. In the sequel we refer
to the EDD loading plan as the EDDL plan.
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5.1.3 Realization of an order

In the job shop the jobs are processed one at a time per resource when the
resource is available and the jobs do not need to wait for predecessors to be
finished. For the realization of the orders we use the tentative EDDL plan
constructed during the OA. Note that such a plan considers the estimated
processing time of the jobs. We allow for uncertainty due to realization differing
from the expectation, causing a possible capacity perturbation.

The actual realization of the job may be different than expected. When the
processing time is larger than the expected value, we compute a new tentative
loading plan with the actual realization. If all the orders remain on time, we
take the new loading plan as the current tentative loading plan; otherwise we
keep the old loading plan and consider the use of non-regular capacity for the
exceeded capacity at a certain cost. The cost of a unit of non-regular capacity
is η.

5.1.4 Characterization of OA

In terms of the OA characterization (i)-(vi) given in Chapter 1 we assume the
following:

(i) Order definitions are based on a finite number of types of orders where
each type has a specific expected processing time, immediate reward upon
acceptance, and a due-time. Violations of due-times are not allowed. The
processing time of each order consists of a specified set of jobs which should be
processed in a specific sequence on specific resources.

(ii) Arrivals of orders take place continuously, however, arrivals are only
evaluated at discrete equidistant time moments, so we consider several arrivals
in each discrete time unit (batch arrivals), and the probability of arrival is order
type dependent.

(iii) Rejection of an order affects only the immediate reward of that order.

(iv) Order processing is type dependent, following the precedence relations
defined by the set of jobs. Realization of an order may differ from the expec-
tation causing a possible capacity perturbation.

(v) Capacity is considered as a job-shop, which may consist of different
resources. Accepted orders are loaded over a planning horizon. There is a
maximum regular capacity. It is possible to use non-regular capacity at a
certain cost, in order to avoid possible violations of due-times for the accepted
orders, that may be caused by the capacity perturbations.

(vi) The acceptance policy should choose a set of orders from the arrival
batch. This policy is supported by a tentative loading plan which determines
whether an order fits into the available capacity. If there is no available capacity
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for an order, the only option is rejection for that order.

5.2 The SMDP model

In this problem as described in the previous section the capacity profile has a
different structure from what is used in the previous chapters. Here we should
take into account the list of accepted jobs that are waiting to be served: the
job list (JL) and information about which jobs are in service and how they are
allocated: the execution profile (EP ). The job-list is a complex structure, it
contains the jobs of the accepted orders that are waiting their turn for realiza-

tion. One might think that a structure with no more than
nP
i=1

ni entries should

be enough to handle all the possible jobs in the job-list, but, for example, the
first job of an order should have a different characterization (e.g. different re-
lease time) than the first job of an order of the same type which was accepted
at a different time moment. The job list and the execution profile constitute
the capacity profile C = (EP, JL).

Having said this, the problem can be modeled as a Semi Markov Decision
Problem similar to those in the previous chapters in the sense that the state
may be characterized by the arrivals and the capacity profile. At every decision
moment there is information about the orders requesting service, the execution
profile and the list of accepted jobs which together define the state of the
system s = (k,C), C = (EP, JL). Here k = (k1, ..., kN ) is the order list and
ki represents the number of orders of type i requesting service. For each order
type i we restrict the maximum number of orders in the order list to mi.
This number may be determined by the arrival probabilities or by the limited
capacity. EP = (ejt) ∈ ZMH is the execution profile and by ejt we refer to
the occupied capacity in the resource j at stage t of the planning horizon. JL
is a table containing information of all the jobs of the accepted orders which
are still waiting to be served. The information in the job-list table includes
the release-time, the due-time, the expected processing time, the resource, the
predecessors and successors of each job and a field indicating if the job is active
or not.

The action space is A = {0, 1, .., N}. The set of allowed actions A(s) for
a state s = (k,C) is defined as follows. Action i ∈ [1..N ] is allowed if order
type i is present in the order list k and capacity is available for at least one
occurrence of that type of order. Rejection of the complete order list is always
an option (i.e., A(s) = {i ∈ [1..N ] |ki 6= 0, EDDL(C, i) is possible}

S
{0}).

The one step state transition from the current state s is described in Table
5.1. The first column represents all the characteristics defining a state transition
from the current state s. The other two columns represent these characteristics
given that the action i in the current state is different from rejection (second
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column), respectively is rejection (third column). Recall that Oi refers to an
order of type i.

current state (s) (k,C) = (k,EP, JL)

action (i) i ∈ A(s), i 6= 0 0
next state (s0) (k − ei, EP, JL+Oi) (k0, EP 0, JL0)

rew(s, i) ri −η
MP
r=1

(PTr − Cmax)
+

d(s, i) 0 1
Pr(s, i, s0) 1 Pr{k0}Pr ( EP 0, JL0/EP, JL)

Table 5.1: Dynamics of transition from current state s in the job-shop model

In case an order of type i is chosen (i 6= 0), an immediate reward ri is
received and a deterministic transition to the next state s0 occurs (Pr(s, i, s0) =
1). Note that there is a time off at this point, i.e., the elapsed time d(s, i) is 0.
The order is then removed from the arrival list so the new arrival list is given
by k − ei where ei is a unit vector with 1 in the position i. The new job-list is
updated including the jobs of the accepted order (JL+Oi), and the execution
profile remains unchanged.

In case the action is rejection (i = 0), the decision process at the current
time is finished; there is a time on; orders may start service on the available
resources according to the EDDL plan until the next decision epoch. Remind
that the system is changing continuously but we are considering only discrete
moments. The transition to the next state is highly stochastic. At the next
decision moment the clock is stopped again and the order arrival processes
determine the new orders list k0. The jobs being processed in between the
decision epochs stochastically depend on the job-list and the execution profile,
they determine the new job-list and the new execution profile (EP 0, JL0) and
also the total immediate reward. This immediate reward is a random variable
and in order to compute it we use the following steps:

step 1 Per each resource r compute the summation PTr of all processing
times of the jobs that were completed on resource r during the time on

step 2 rew(s, 0) = −η
MP
r=1

(PTr − Cmax)
+

This negative reward is a penalization for each unit of non-regular capacity
that was necessary to use in order to keep all accepted orders in time.

The objective is to find a deterministic policy π:

π(s) =

½
i
0

i ∈ 1...n select order type i
reject the arrival-list,

which maximizes the performance of the system. The performance of the sys-
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tem is measured as the expected value of the total discounted reward. The
corresponding Bellman equation for the state value function V π is given by:

V π(s) =rew(s, π(s)) + γd(s,π(s))
X
s0

Pr(s, π(s), s0)V π(s0),

where γ is the discount factor and d(s, i) is the elapsed time as introduced
before. The optimal action value function Q∗ in this case satisfies:

Q∗ (s, i)=rew(s, i) + γd(s,i)
X
s0

Pr(s, i, s0)max
i0

Q∗(s0, i0)

and the optimal policy π∗(s) can be determined by: π∗(s) = argmax
i
Q∗(s, i).

This problem is more complex than the problems analyzed in the previous
chapters. The definition of the state is more complex since the capacity profile
has a new component (JL). The transition probabilities and the immediate
reward depend on the probability distributions of the processing time of the
jobs in the job-list and on the probability of the jobs causing capacity excess.

A description of the detailed model, in particular the transition probabili-
ties, is not necessary since our approach is simulation based. Next we discuss
the applicability of our RL-approach to this model.

5.3 Reinforcement Learning approach

Here we discuss the application of Reinforcement Learning to the order accep-
tance problem described before. We use QL methods that aim to approximate
the optimal Q-value function as discussed in Chapter 2. The RL-agent should
learn an OA-policy while interacting with the environment. We focus here on
traditional Q-learning using ANN as introduced in Chapter 2.

In this problem, the state representation has a complex structure, as ex-
plained above. Using the complete state information makes the input of the
backpropagation ANN (see Section 2.2) very complex, demanding a more in-
tensive learning process. Making an analogy with the state representation from
the previous models, and taking into account that we use a simulation model
instead of a detailed model, we decided to simplify the structure of the state
representation. In order to do this we use the concept of feature, see (Bertsekas
& Tsitsiklis, 1996). Features are used to summarize the most important char-
acteristics of the state, they are usually motivated by problem insight. Below
we simplify the state s = (k,C) by defining on the one hand a feature for the
order list k and on the other hand a feature for the capacity profile C.

We use the loading profile L as a feature of the capacity profile C =
(EP, JL). The loading profile combines the information in the job-list JL
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Figure 5.2: The loading-profile combines information from the execution-profile and
the job-list by loading the jobs from the job-list into the execution profile. Here is an
example in a case with H = 4 stages, M = 2 and Cmax = 8. The job list is simplified
here for the example

and the execution profile EP into a single structure according to the tentative
loading plan. Figure 5.2 shows an example with M = 2, H = 4 and Cmax = 8
hours. There is currently a job in execution using all the capacity at the first
stage of the planning horizon on resource 1. Assume that one stage of the
planning horizon spans 8 hours. The job-list as in the figure is a table, the first
column gives the identification of the jobs waiting for service, the next three
columns describe the resource (R), expected processing time (β) and due-time
(t in hours). The last column specifies which jobs are ready to go in service
(active = 1) and which should still wait (active = 0). There are 3 jobs in the
job list. Job J22 should wait for its predecessor job J21 to be finished in order to
be active. The loading-profile combines information from the execution profile
and the job list by loading the jobs from the job list into the execution profile.
In the example, J12 is loaded at stage 1 in resource 2, J21 is loaded at stage 2
in resource 1 and J22 is loaded at stage 3 in resource 2. In the figures in this
section the due-time unit is stage over the planning horizon, and the job list
has a simplified structure for reasons of transparency.

Basically we use the loading procedure as a feature extracting mapping from
the capacity profile (EP, JL) to the loading profile L. In order to give more
information, and since it does not imply an extra effort, instead of giving the
complete arrival list k, we give to the RL-agent a feature kr of k which only
considers the type of orders that do fit in the capacity profile.

The set of features (kr, L) is what the RL-agent receives at each interaction
instead of receiving the current state. In this case, it is said that the RL-
agent receives an observation obs = (kr,L) of the state of the environment.
In a way one may say that the overwhelming amount of information from
the environment is filtered before it reaches the agent in the same fashion as
bright sunlight is filtered by sun glasses before it reaches the human eye. The
learning problem is now an extension of the basic SMDP explained in Section
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Figure 5.3: An example of the same loading profile coming from two different job
lists (A and B) that produces two different loading profiles when a new arrival occurs
(in C)

2.1 known as Partially Observable MDP (POMDP), see (Kaelbling et al., 1996)
and (Kaelbling et al., 1998). An agent in a POMDP takes actions and receives
reward, as in an MDP, but the agent never directly sees the identity of the
current state. Rather, the agent has access only to the current observation
which complicates the problem of learning, see Figure 5.7.

A POMDP has an underlying SMDP (the real environment where the agent
is situated), but the POMDP (the environment as perceived by the agent) itself
is not Markovian. A new observation does not only depend on the previous
observation and action, but on the preceding experience. It could happen that
the same observation and the same action but coming from two different past
histories, always lead to two different new observations. Figure 5.3 shows an
example of the same loading profile coming from two different job lists (cases A
and B) that produces two different loading profiles when a new arrival occurs
(in C) that fits in the capacity profile. The acceptance of the order arriving in
C will always produce two different loading profiles for cases A and B, Figures
5.4 and 5.5 illustrate the build up of both loading profiles.

"The most naive strategy for dealing with POMDP is to ignore it. That is
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to treat the observations as if they were the states of the environment and try
to learn to behave", (Kaelbling et al., 1996). Furthermore practice has shown
that:

• Small violations of the Markovian properties are well handled by Q-
learning algorithms, see (Kaelbling et al., 1996).

• When the RL-agent handles information about a combination of features
of the state it is able to find a better policy than heuristic agents that
only consider a few features, see (Riedmiller & Riedmiller, 1999).

There are other ways to deal with POMDP though, see (Kaelbling et al.,
1998),(Kearns et al., 2000), (Bakker et al., 2002), (Bakker, 2002), (Bakker
et al., 2003). In general they work with an internal memory of previous expe-
riences (observations and actions) for the RL-agent that helps to disambiguate
the current state. But this implies a more complex structure for the learning
procedure.

Therefore we decided to use (kr, L) as a set of features of the state to feed
to the RL-agent. We believe the set of features we use constitutes a rather
good observation. Note that in building kr we need the set of possible actions
which incorporates knowledge from the job list and the execution profile that
is not in the loading profile. See Figure 5.6 for an example in which the same
loading profile in two different cases (A and B) may lead to two different sets
of possible actions. In our opinion this is an intermediate approach between
the naive and the more sophisticated approaches for solving POMDP.

Note that the features are only used as the input vector to the RL-agent.
The transition of the sates is made as in the SMDP discussed in Section 5.2,
keeping all the information of the states. Now the agent-environment interac-
tion is not as in Figure 2.1 but as in Figure 5.7. In this case the agent is working
with a different perspective of the environment, its sensors are different. It can
be thought of as an observer which translates the state into observations for
the agents.

The behavior of the RL-agent is according to an −greedy exploration rule as
explained in Chapter 2: with probability 1− the agent chooses a greedy action
(the action a from A(obs) which maximizes Q(obs, a)) and with probability a
random action. The parameter decreases over time according to the following
rule t = 0

1+ t
T
.

As for the knowledge structure, the agent uses an I − θ − 1 perceptron to
store the Q−values as discussed in Section 2.2.3. The input of the perceptron
is a codification of the observation-action pair (obs, a), in the following way:

• n integer inputs showing the numbers of orders of each type (kr1, ..., krn).
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• MxH integer inputs showing the already allocated capacity at each of

the loading profile stages

⎛⎜⎝ L11 L12 · · · L1H
...

...
...

LM1 LM2 · · · LMH

⎞⎟⎠ .

• 1 integer input representing the action.

Using this codification for the input, the size of the ANN is (n+MH+3)θ+1
which is a much lower dimension than the state and action space has in general,

|SxA| ≥ (n + 1)(Cmax + 1)MH
nQ
i=1
(mi + 1) ≥ (n + 1)2n+MH . The output of

the perceptron is a single value that is the approximation of the state-action
value function Q(obs, a).

The goal is to maximize the expected total discounted reward. Again we
use 0.9 as discount factor. Next we discuss the tuning of the parameters of the
agent.

5.3.1 Tuning RL-agents

In Section 2.3.2 we defined a general learning schedule with six parameters
(θ, T, α0, 0, Tα, T ). This schedule defines the number of hidden neurons (θ),
the number of iterations of the training process (T ), the initial value of the
learning and exploration rate (α0, 0), and the parameters for the learning
and exploration rates decreasing functions (Tα, T ). In our implementations
these parameters have been chosen through experimental experience and are
by no means optimized. However from the numerical experiments with the
different problems discussed in Chapters 3 and 4, we observed the following
regularities that may help to set guidelines for the tuning of the parameters,
see also Appendix B.

1. A satisfactory behavior of the RL-agents was obtained for certain θ, using
α0 = 10

−3, 0 = 1, T = μ104, Tα = μ103, T = ν103 for a certain value
μ, and ν ∈ [1, ..., μ]. We call this combination of parameters the (θ, μ)-
scheme when we take the ν that achieves the best observed performance,
and use the notation AR (θ, μ) for the Average Reward (AR) of a trained
agent using a (θ, μ)-scheme. By a satisfactory behavior we mean that
the AR (θ, μ) approximates or outperforms the AR of the best known
heuristic.

2. For a given θ, AR (θ, μ) is monotonically increasing with respect to μ, up
to a certain value μ1(θ) from where it starts to oscillate.

3. For a given μ, AR (θ, μ) is monotonically increasing with respect to θ, up
to a certain value θ1(μ) from where it starts to decrease.
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4. The values μ1 (θ) and θ1 (μ) depend on problem properties.

The reason for regularity 2 could be that increasing training (iterations,
learning, exploration), allows the RL-agent to gather more information obtain-
ing a better performance. But when the knowledge structure (ANN) is not
enough for that information, the agent could be overtrained and exploratory
actions could deteriorate performance causing the oscillations.

On the other hand, the reason for regularity 3 could be that when increas-
ing the size of the ANN, we increase the potentiality of the ANN as a function
approximator, allowing the agent to make a better use of the gathered in-
formation, and improve performance. But increasing the size of the ANN also
requires extra effort to adjust all the weights, so it could be that there is a limit
to the size of the ANN for which the gathered information is not sufficient.

On the basis of regularity 1 we have reduced the learning schedule with
six parameters (θ, T, α0, 0, Tα, T ) to a ( θ, μ, ν)-learning schedule with three
parameters. In addition, on the basis of all the observed regularities, we have
designed a methodology to tune the three parameters (θ, μ, ν). The idea is,
starting with small values for parameters θ and μ, to increase them until the
RL-agent using the (θ, μ)-scheme outperforms the best known heuristic (i.e.,
AR (θ, μ) > ARHeu). For a fixed θ, we increase μ until the AR (θ, μ) starts
to decrease or gets greater than ARHeu. If AR (θ, μ) is not yet greater than
ARHeu we increase θ and start to increase μ again. For a fixed θ and μ we
use the (θ, μ)-scheme, which finds the best exploration parameter ν under this
scheme. To find the best ν we do not try all the possible values in [1, ..., μ] but
we start with the value of the best exploration parameter obtained before. This
is because when we start a new (θ, μ)-scheme with a higher learning structure
or more learning transitions, it does not make sense to explore less than in the
previous (θ, μ)-scheme. Although this tuning process may stop when the RL-
agent outperforms the best known heuristic we should also add other stopping
criteria. It could happen for a specific problem that the heuristic at hand gives
already a good policy. Algorithm 5.2 sketches this tuning procedure in more
detail.

The increase-steps for the parameters θ and μ are chosen on the basis of
experience, we found out that a larger step-size for θ leads us to a more rad-
ical change in performance but it also requires more training iterations. In
the figure, QL(θ, μi, ν) represents the Q-Learning using the ( θ, μ, ν)-learning
schedule, it returns the Average Reward of the trained RL-agent after 20000
iterations (AR20000), which is our performance measure.
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i← 0, νi ← 0, θ0 ← 0, μ0 ← 0
∆θ ← 50,∆μ← 1
repeat
θ ← θ +∆θ
repeat
i← i+ 1, μi ← μi−1 +∆μ
for ν = νi to μi do
AR(ν)← QL(θ, μi, ν)

(AR(θ, μi), νi)← max(AR(νi : μi))
until AR(θ, μi) < AR(θ, μi − 1) or AR(θ, μi) > ARHEU

if AR(θ, μi) < AR(θ, μi − 1) then
i← i+ 1

until AR(θ, μi) > ARHeu or STOP

Algorithm 5.2: Tuning RL-agent to outperform a known ARHEU

5.4 Experimental results

In this section we present the application of QL, as discussed in Chapter 2, to
two cases of the OA in the job-shop model presented in this chapter. The first
case uses deterministic processing times and the second case is a version of the
first case with stochastic processing times.

In both cases we compare the results of the RL-agent against the general
one-parameter-heuristics as presented in Section 4.3. The heuristicsOrderQual-
ity(b) and CapacityLevel( ρ) here are the analogues of those defined for the
single resource case. The only difference is in the parameter ρ, which here is
a matrix P = (ρij) that indicates the maximum level of capacity that can be
occupied in resource j after the acceptance of an order of type i. The process-
ing time for orders of type i as used in previous models is here the sum of
the processing times of all the jobs of the order, wi =

P
j

βij . The heuristic

CapacityLevel(P ) is then defined as follows:

Heuristic: Capacity level

• allowed actions for each state s ∈ S :

A2(s) = {i ∈ A(s)\{0} | capj(s, i) ≤ ρijHCmax, j = 1..M}
S
{0}

• ordering for all actions in A:

in+1 = 0, i Â j if
³
ri
wi

> rj
wj

´
or
³
ri
wi
= rj

wj and ri > rj

´
.
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Here capj(s, i) denotes the total occupied capacity in resource j after ac-
cepting an order of type i when in state s. HCmax is the total capacity in the
planning horizon.

All these heuristics use partial information about the problem like rewards,
capacity request, capacity profile; they do not take into account the arrival
rates, and specific routings for example. Defining heuristics that consider all
these factors is a difficult task. Unlike these heuristics, the RL-agent has a
learning mechanism, which we expect to be useful extracting the implicit in-
formation from the state transitions in order to learn a good OA-policy.

For a trained RL-agent that was using the ( θ, μ, ν)-learning schedule we use
the notation: NNθAμBνC, where θ = A is the number of hidden neurons; μ =
B defines the training period and the learning rate as follows: T = μ104, α (t) =

μ
103μ+t ; and ν = C defines the exploration rate (t) = 103ν

103ν+t . For finding good
parameters we use the procedure explained in Section 5.3.1. Furthermore, we
apply the techniques incorporated in the framework in Section 4.4.1 in order
to interpret the policy learned by the RL-agents, see Algorithm 4.3. As a
performance measure we use ARt, the total average reward accumulated per
unit of time up to the time corresponding to iteration t.

5.4.1 The case with deterministic processing times

This is a case with 4 types of orders and 2 types of resources. The planning
horizon is 5 days (H = 5), i.e., one stage in the planning horizon spans 24
hours. There are 8 working hours a day (Cmax = 8). All types of orders have 2
jobs, one at each resource. Table 5.2 shows the data of this case. The orders of
type i follow a Poisson arrival with parameter λi, which indicates the expected
amount of arrivals in between decision moments. The routing σi = [(Rij , βij)]
indicates the resource and processing time needed by the job j in the order i.
The table also indicates the reward upon acceptance ri, the due-time ti, and
the maximum number of arrivals per day mi for each type of order. Decisions
should be taken daily, on which orders to accept from the pool of orders that
have arrived in the last 24 hours. Orders that are not accepted in that day
will go out of the system. The order type 1 is the least frequent but the more
profitable one, so a good policy might always accept this type of order. The
orders of type 2 and 3 have the same ratio of profitability ( 2 units of reward
per unit of total processing time) and the same arrival rate, but order type 3
has smaller processing time, and a shorter due-time. The order type 4 is the
least profitable order, but since it has the smallest processing time, and it is
the most frequent, it could be convenient to accept it sometimes.

Note that in this problem the components of the capacity profile would
take only the values 0, 4 and 8 because of the values of the processing times.
Therefore the cardinality of the observation space is potentially 10 ∗ 313 =
15 943 230.
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i λi σi = [(Rij , βij)] ri ti mi
Capacity
Profile

1 0.5 [(2, 12), (1, 12)] 96 120 2 H = 5
2 1 [(1, 16), (2, 8)] 48 120 2 M = 2
3 1 [(2, 8), (1, 8)] 32 72 2 Cmax = 8
4 2 [(1, 4), (2, 4)] 8 120 9

Table 5.2: Description of the deterministic case in the job shop model

Heuristics

The most profitable order is the order of type 1 with four units of reward
per total capacity; and since there is no stochasticity on the order realization,
there is no reason not to accept orders of type 1 when capacity is available, no
other better order would come in the future. Thus a good policy should always
accept orders of type 1. It is not the case with the other order types which are
more frequent but receive lower reward per capacity. We consider for simplicity
CapacityLevel(ρ) policies with the same safety level for both resources. In the
following we named these policies CapacityLevel(1, ρ), where ρ is the level of
capacity that could be used for the order types other than order type 1. Table
5.3 shows the heuristics that consider level of safety 1 for order type 1 and 0.9,
0.8, etc. for the rest of the orders. That means that when capacity is available,
always an order of type 1 is accepted.

scenario AR20000
CapacityLevel(1, 0.9) 22.82
CapacityLevel(1, 0.8) 28.51
CapacityLevel(1, 0.6) 44.13
CapacityLevel(1, 0.5) 46.46

scenario AR20000
CapacityLevel(1, 0.4) 46.48
CapacityLevel(1, 0.3) 44.65
CapacityLevel(1, 0.2) 44.31
CapacityLevel(1, 0.1) 43.04

Table 5.3: Heuristics CapacityLevel(1,ρ) for the deterministic case in the job-shop
model

The best heuristic is CapacityLevel(1, 0.4) which always accepts orders of
type 1 but accepts the others only if capacity is kept under 0.4 of the total
capacity on each resource. That means that in a planning horizon of 40 working
hours only 16 hours are occupied when accepting orders of type different from
1.

RL-agents

Table 5.4 shows results of some RL-agents trained for this case. RL-agents are
trained sequentially according to the (θ, μ, ν)-methodology described in Section
5.3.1. The table only shows the results of the RL-agents for the best value of
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ν for each pair (θ, μ).

scenario AR20000
NNθ150μ6ν6 27.76
NNθ200μ8ν6 43.34
NNθ250μ11ν10 43.66
NNθ300μ12ν10 43.67

scenario AR20000
NNθ350μ14ν14 42.27
NNθ400μ16ν16 45.65
NNθ450μ22ν22 46.17

Table 5.4: Results of RL-agents in the deterministic case in the job-shop model

The best RL-agent (NNθ450μ22ν22) approximates CapacityLevel(1, 0.4)
with a 0.66% of error in the average reward.

Learning the RL-policy

Here we analyze the policy learned by the RL-agent NNθ450μ22ν22 using
20000 iterations from this trained agent. Unlike in the previous model, here
we have simplified the decision making by given to the agent the set of pos-
sible actions (we do this by means of the feature kr), so there are transitions
where rejection is the only possible action, which we call trivial decision. To
analyze the policy we would not take into account the trivial decisions. The
trivial iterations are easily filtered out by a quick scan of the total list of 20000
iterations. For this case we have 17546 useful iterations.

Using the simple data mining technique we explained in Section 4.4.1 we
obtain the general preference relation for the zero level of the decision tree
φ0 = (1, 3, 2, 0, 4) with 1757 errors, which makes 90% of quality. The matrix of
selected/possible actions Aθ is shown in Table 5.5.

Selected Possible Actions
Actions 1 3 2 0 4

1 4283 1604 1251 4203 3689
3 6 2412 1140 2412 2080
2 14 229 1073 1073 903
0 1 640 436 9220 9082
4 1 81 67 558 558

Table 5.5: Selected action against possible actions in 17546 iterations of the RL-
agent in case 1 of the job-shop model

Giving higher priority to action zero (rejection) than to action 4 means that
action 4 would never be taken following a heuristic Priority(φ0) defined by that
preference relation. In any case the type of order 4 is the least profitable type
of order. Although such a heuristic makes an average reward of 46.735, which
is the best so far, it does not take into account the capacity profile.
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Taking into account information on the capacity profile is more complex
in this model. Branching according to the distribution of capacity on each
resource is very expensive computationally since the number of combinations
of such distributions in this case could be up to 310 (5 stages per each of
the 2 resources, each taking values 0, 4 or 8). Therefore we only consider the
total amount of loaded capacity at each resource respectively. Recall that L
is a MxH matrix representing the loading profile according to the tentative
loading plan, so we define the total amount of loaded capacity in resource i by

TLi =
HP
j=1

Lij .

Table 5.6 describes the first level of the decision tree with eleven nodes.
These nodes were obtained after a preprocessing phase during which we grouped
together observations with the same preference relation. The columns specify
the number of the node, the description of the node, the preference relation,
the number of transitions covered by the node, the number of errors, and the
percentage of the error. In general we denote by HeukNNθ the k-th heuristic ob-
tained from the trained RL-agent with θ hidden neurons. We call Heu1NN450
to refer to the heuristic described by the rules in Table 5.6.

N0 (TL1,TL2)
Preference
relation

# of
cases

errors % errors

1 TL1≤ 4 1,3,4,2,0 340 60 17. 6
2 TL1= 8∧TL2≤ 8 1,3,2,0 638 92 14.4
3 TL1= 8∧TL2≥ 12 1,2,0 11 0 0
4 TL1= 12∧TL2≤ 12 1,3,2,0 2161 312 14.4
5 TL1= 12∧TL2≥ 16 1,0 10 1 10
6 TL1= 16∧TL2 6= 8 1,3,0 1817 242 13.3
7 TL1= 16∧TL2=8 1,3,2,0 700 13 1.8
8 (20 ≤TL1≤ 24)∧TL2≤ 8 1,3,0 2030 141 6.9
9 (20 ≤TL1≤ 24)∧TL2=12 1,3,2,0 3141 128 4.1
10 (20 ≤TL1≤ 24)∧TL2≥ 16 1,0 1641 144 8.8
11 TL1≥ 28 1,0 5057 104 2

Table 5.6: Branching the NNθ450μ22ν22-policy by total capacity per resource. It
shows the priority policy and the errors with respect to the NN450μ22ν22 of these
priorities for the different combinations of capacity. We call this policy Heu1NN450

This heuristic has quality 93% with respect to the policy learned by the
RL-agent NNθ450μ22ν22 and makes an average reward of 47.97. The policy
learned by the RL-agent is not an optimal policy as we may see, but the idea
is that it is approaching a good policy during the training procedure while
its potentiality as an approximator is increased with the increasing number of
hidden neurons, and the length of the training period. That means that some
learned decisions may be wrong, mainly related to those infrequent states, as
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for example in the states where orders of type 2 are accepted for high levels of
TL1 and TL2. Table 5.7 shows, besides the previous agents NNθ450μ22ν22,
and Heu1NN450, a collection of other agents following heuristics obtained from
Heu1NN450 by successive elimination of the acceptance of orders of type 2 in
cases with high levels of TL1 and TL2.

Agent Description AR20000 % Error
NNθ450μ22ν22 46.17 0.0
Heu1NN450 Table 5.6 47.97 7.0

Heu2NN450
in Table 5.6 at row 9
eliminate action 2

48.53 7.5

Heu3NN450
in Table 5.6 at rows 9 and 7

eliminate action 2
49.19 8.4

Heu4NN450
in Table 5.6 at rows 9,7 and 3

eliminate action 2
49.20 8.4

Table 5.7: Results from the the RL-agent and the heuristics obtained from an analy-
sis of the policy learned by the RL-agent in the deterministic case of the job-shop
model

The best result is obtained with Heu4NN450 which has quality 91.6% with
respect to the policy learned by the RL-agent NNθ450μ22ν22 and an average
reward of 49.2 which is 6.56% higher than the average reward of the RL-agent.
We could continue defining other heuristics, but it seems to be a general learned
rule that orders of type 4 are only accepted when capacity utilization is very
low, and only if there are no orders of type 1 and 3. For high levels of capacity
utilization, only orders of type 1 are accepted. In general orders of type 3 are
preferred over orders of type 2.

Table 5.8 shows the results of three one-way ANOVA tests between the Ca-
pacityLevel(1, 0.4),the RL-agentNNθ450μ22ν22, and the heuristic Heu4NN450,
each simulated using five independent samples of this case. The table shows
significant evidence against the equality of the performances obtained by using
the three policies.

Agents F Pr
CapacityLevel(1, 0.4)+NNθ450μ22ν22 7.38 0.0264
CapacityLevel(1, 0.4)+Heu4NN450 1416.58 2.72x10−10

NNθ450μ22ν22+Heu4NN450 2172.12 4.96x10−11

Table 5.8: Results of one-way ANOVA tests between the CapacityLevel(1,0.4), the
RL-agent NNθ450μ22ν22, and the heuristic Heu4NN450 in the deterministic case of
the job-shop model
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5.4.2 The case with stochastic processing times

This is the same case as before, but the processing times follow a discrete
distribution with three parameters (v, a, p) such that the expected value is
v = βij as shown in Table 5.9. Parameter a determines the deviation from
the expected processing time of a job and parameter p the probability of such
deviation.

value prob
v − α 2p
v 1− 3p
v + 2α p

Table 5.9: Discrete distribution for the processing times in the stochastic case of the
job shop model

Table 5.10 shows the data of this case. The jobs in an order have the same
parameters a and p for their processing time distribution. The most profitable
order (type 1) is the one with higher deviation in the processing time of the jobs
(a = 8, p = 1/4). And the least profitable order does not suffer any deviation
in the processing time of its jobs.

orderi λi
routing
[(Rij , βij)]

time
distribution

ri dti mi
Capacity
Profile

α p
1 0.5 [(2, 12), (1, 12)] 8 1/4 96 120 2 H = 5
2 1 [(1, 16), (2, 8)] 2 1/8 48 120 2
3 1 [(2, 8), (1, 8)] 1 1/16 32 72 2 Cmax = 8
4 2 [(1, 4), (2, 4)] 0 0 8 120 9

Table 5.10: Description of the stochastic case in the job shop model

Note that in this problem, due to the stochasticity of the processing times,
the components of the capacity profile would take all the possible values in
[0, ..., 8]. Therefore the cardinality of the observation space is potentially 10 ∗
323 = 941 431 788 270.

Heuristics

Table 5.11 shows the results from the heuristics.

The best heuristic is CapacityLevel(1, 05) which always accepts orders of
type 1 and acts greedily with respect to the orders keeping a 50% of the capacity
free at each resource.
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scenario AR20000
greedy 21.02
random 20.79
CapacityLevel(1, 09) 22.06
CapacityLevel(1, 08) 25.92
CapacityLevel(1, 07) 34.28
CapacityLevel(1, 06) 36.17

scenario AR20000
CapacityLevel(1, 05) 37.12
CapacityLevel(1, 04) 36.90
CapacityLevel(1, 03) 35.27
CapacityLevel(1, 02) 34.91
CapacityLevel(1, 01) 33.19

Table 5.11: Heuristics for the case with stochastic processing times in the job-shop
model

RL-Agents

First we run the best RL-agent trained in the deterministic case which was the
NNθ450μ22ν22. Then we train an RL-agent with the same learning schedule
for this case. To differentiate it from the RL-agent in the deterministic case,
we add at the end of the name, the suffix -spt (from stochastic processing
time). Table 5.12 shows the results of the agents in this case including the best
heuristic from the deterministic case (Heu4NN450).

scenario AR20000
NNθ450μ22ν22 37.45
Heu4NN450 38.21
NNθ450μ22ν22spt 35.03
NNθ550μ20ν20spt 37.22

Table 5.12: Results of RL-related agents in the stochastic case in the job-shop model.
The first agent was trained in a deterministic environment with the expected processing
times (as in case 1), and the second agent is the best of the heuristics obtained also
in the deterministic environment. The last two agent are RL-agents trained for this
case with stochastic processing times

Learning the RL-policy

Here we analyze the policy learned by the RL-agent NNθ550μ20ν20spt using
17171 non-trivial iterations (where rejection was not a trivial decision). Using
the simple data mining technique we explained in Section 4.4.1 we obtain the
general preference relation for the zero level of the decision tree φ0 = (1, 3, 2)
with 3012 errors, which makes 82.5% of quality. The matrix of selected/possible
actions Aθ0 is shown in Table 5.13.

Taking into account information on the capacity profile is more complex
in this case. Remember that the total amount of occupied capacity at each
resource could get any value in [0,...,40]. Table 5.6 describes the first level of
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Selected Possible Actions
Actions 1 3 2 0 4

1 3693 1465 1143 3693 3166
3 1 2221 914 2221 1907
2 80 536 1635 1635 1404
0 0 617 271 8000 7813
4 0 193 137 1622 1622

Table 5.13: Selected action against possible actions in 17546 iterations of the RL-
agent in the stochastic case of the job-shop model

the decision tree branching according to the total amount of occupied capacity
TL1 and TL2 at each resource respectively. We call the heuristic described by
these rules Heu1NN550SPT.

This heuristic has quality 84.2% with respect to the policy learned by the
RL-agent NN550μ20ν20 and makes an average reward of 38.01. The errors
are due to the differentiation that the RL-agent learns according to the dis-
tribution of capacity. Branching according to the distribution of capacity on
each resource is very expensive computationally, since the number of combina-
tions of such distributions in this case could be up to 320 (5 stages per each
of the 2 resources, each taking 9 values). Table 5.15 shows both these agents
and the collection of other heuristics obtained from a consecutive analysis of
Heu1NN550SPT.

The best result is obtained with Heu3NN550SPT which has an Average
Reward of 38.24 and differs from the RL-policy in 17.8% of the cases.

Table 5.16 shows the results of three one-way ANOVA tests between the Ca-
pacityLevel(1, 0.4),the RL-agentNNθ450μ22ν22, and the heuristic Heu4NN450,
each simulated using five independent samples of this case. The table shows
significant evidence against the equality of the performances obtained by using
the three policies.

5.5 Conclusions

This chapter discussed the application of RL for OA in a job-shop model.
Based on experimental results from previous chapters we presented a learning
scheme to train RL-agents using a reduced set of parameters. Here we analyzed
two cases, one with deterministic processing times, while the second is the same
problem but with stochastic processing times. In both cases we train RL-agents
until we find a good approximation to the best known heuristic.

Using simple data mining we could gain some insight into the learned RL-
policies and approximate these policies by sets of logical rules which are easier
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N0 TL1 TL2 preference relation # of cases errors
1 [0,4) [0,8) 1,2,3,4 589 144
2 [0,4) ≥8 1,4,0 29 10
3 [4,8) [0,4) 1,2,3,0 162 12
4 [4,8) ≥4 1,2,0 247 46
5 [8,12) [0,4) 1,3,2,4 362 37
6 [8,12) ≥4 1,3,2,0 817 204
7 [12,16) [0,16) 1,3,2,0 2831 612
8 [12,16) ≥16 1,3,0 251 106
9 [16,20) [0,20) 1,3,2,0 2422 302
10 [16,20) ≥20 1,2,0 126 27
11 [20,24) [0,12) 1,3,0 900 52
12 [20,24) [12,16) 1,3,2,0 778 16
13 [20,24) [16,24) 1,2,3,0 993 132
14 [20,24) [24,28) 1,2,0 65 8
15 [20,24) ≥28 1,0 15 2
16 [24,28) [4,12) 1,3,0 540 35
17 [24,28) [12,16) 1,3,2,0 649 60
18 [24,28) [16,20) 1,0 756 72
19 [24,28) [20,24) 1,2,30 618 123
20 [24,28) [24,28) 1,3,2,0 287 62
21 [24,28) ≥28 1,2,0 50 11
22 [28,32) [0,12) 1,0 299 38
23 [28,32) [12,16) 1,3,0 312 142
24 [28,32) ≥ 16 1,0 1359 216
25 ≥ 32 [0,36) 1,0 1702 267

Table 5.14: Branching the NNθ550μ20ν20SPT-policy by total capacity per resource.
We call this policy Heu1NN550SPT

to interpret than the RL-policies. When analyzing these approximate policies,
we observe relations between resource capacity profiles and preference relations
for the order types. Furthermore there are some infrequent states for which
the learned decision seems to be illogical. Modifying these decisions we develop
new heuristics that improve the RL-agent’s results.

The case with stochastic processing times is more expensive computation-
ally, due to the increase in the state space and complexity of the transitions.
In our experiments we observe that the RL-agents trained with the expected
value of the processing times (i.e., NNθ450μ22ν22), obtain better results that
an equivalent (same parameter settings) RL-agent trained with the stochastic
processing times (i.e., NNθ450μ22ν22spt).
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Agent Description AR20000 % Error
RL NNθ550μ20ν20spt 37.22 0.0
Heu1NN550SPT Table 5.14 38.01 15.8

Heu2NN550SPT
same as Heu1NN550 but for
C1 ≥ 24 use priority-rule=(1,0)

38.03 16.9

Heu3NN550SPT

same as Heu2NN550 but
C1 C2 pref. order
[12,16) [16,20) 1,2,0
[12,16) ≥20 1,0
[16,20) [12,20) 1,3,0
[12,16) ≥20 1,0
[20,24) [12,24) 1,3,0
[20,24) [24,28) 1,0

38.24 17.8

Table 5.15: Results from the RL-agent and the heuristics obtained from an analysis
of the policy learned by the RL-agent in the stochastic case of the job-shop model

Agents F Pr
CapacityLevel(1, 0.5) +NNθ550μ20ν20sp 23.63 0.0013
CapacityLevel(1, 0.5)+ Heu3NN550SPT 795.75 2.69x10−9

NNθ550μ20ν20sp+ Heu3NN550SPT 794.27 2.71x10−9

Table 5.16: Results of one-way ANOVA tests between the Caplev(1,0.5), the RL-
agent NNθ450μ22ν22, and the heuristic Heu3NN550SPT in the stochastic case of
the job-shop model
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Chapter 6

OA involving additional
decisions

In this chapter we consider Reinforcement Learning supporting Order Accep-
tance together with other kinds of decisions in an integrated planning approach.
The idea is to show how RL may also be useful in more general and realistic
decision making settings.

We consider three types of problems. The first type of problem considers
choosing routes for each order in an open job shop, the second one considers
outsourcing decisions that may outsource a specific job of an order, and the
last one includes a due-time and price negotiation with the customer.

In Section 6.1 we present the description of the problems and in Section
6.2 the SMDP approach. In Section 6.3 we discuss the application of RL to
these problems and the experimental results are shown in Section 6.4. Finally
in Section 6.5 we draw some conclusions.

6.1 Description of the problems

The three problems have a similar description since we use the same integrated
simulation environment as in Chapter 5. The main differences are on the
description of the arriving orders, the type of decisions, and the consequence
of the decision. First we briefly comment on the similarities, which can be
found more extensively in Chapter 5. Then we explain the particularities of
each specific problem.

There is a finite number n of order types that arrive continuously over
time but are collected in batch every fixed period of time. Each batch arrival is
processed for acceptance. Each order i consists of a set of ni jobs and is denoted



120 Chapter 6. OA involving additional decisions

by Oi = {Ji1, , Jini}. For simplicity reasons we consider in this chapter that
every order consists of at most two jobs (ni ≤ 2), deterministic processing
times, and two types of resources in the shop floor.

Also here the decision is made sequentially, choosing orders one by one
during a time off. Besides choosing an order for acceptance, another decision
must be taken which is different for each type of problem: choosing a route
in the first problem, deciding about outsourcing in the second, and choosing a
due-time option in the third. Once a batch of orders is finally accepted (the
word "finally" is used here to emphasize that it is after the negotiation with
the customer in the third type of problem) we have a set of orders with the
same characteristics as in Chapter 5. These accepted orders are then processed
in the same way as we explained in that chapter. The EDDL procedure is also
used here to support the OA decision and the resequencing problem in the shop
floor.

6.1.1 Routing problem

Here we consider routing decisions in an open shop. The problem in this case
is similar to the multiresource problem. But the description of the orders does
not include a fixed routing and a decision has two parts: as before one is which
orders to accept, and the other part is for each of the accepted orders which
routing should be used.

Order Types

There is a finite number n of order types that arrive continuously over time.
Each order consists of a set of jobs. The order i is characterized by the arrival
rate (λi), due-time ( ti), processing time ( βi) and receives an immediate reward
(ri) upon acceptance. The requested capacity βi is a vector (βij) where βij
is the processing time of job j in order i . Job j in order i must be done in
resource j, and the only constraint is that two jobs of the same order are not
simultaneously processed.

Decision making

Every time period a decision must be taken on the collected orders. Orders
are chosen one by one from the arrival list. Besides, we should choose a route
for each order. Since we are only considering two resources, there are at most
two routes for each type of order, depending on the capacity profile and the
list of accepted jobs waiting for service. In different situations occurrences of
the same type of order may be accepted with different routes, even during the
same time off period. At the end of the decision period all accepted orders
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have been assigned a route, therefore the situation at this point is similar to
the situation in Chapter 5.

6.1.2 Outsourcing problem

Here we consider together with the order acceptance decision, the possibility
of deciding to outsource part of the order. Reasons for outsourcing might be
that there is no available capacity for the whole order or -differently- you want
to reserve capacity for more profitable jobs. For simplicity reasons here we
consider that only the second job of an order could be outsourced, so there are
two outsourcing options. Not outsourcing an order means that both jobs of the
order will be processed in the shop.

Outsourcing an order means that the first job of the order will be processed
in the shop and the other one will be outsourced. Furthermore there could be
a limit lo on the total amount decided to outsource at each decision moment.
The description of the orders includes two options for the immediate reward
upon acceptance, depending on the outsourcing option.

A decision consists of two parts: as before one is which orders to accept,
and the other part is whether to outsource the accepted orders or not.

Order Types

There is a finite number n of order types that arrive continuously over time. The
orders are subdivided into at most two jobs. The order type i is characterized
by the arrival rate (λi), a due-time (ti), a routing ( σi), and a set of options
(ϕi) for the immediate reward upon acceptance. We put ϕi = (ri1, ri2) where
ri1, ri2 are the immediate rewards upon acceptance of only the first job or
both jobs of the order, respectively. In accepting only the first job the reward
ri1 is the total reward expected from the market minus outsourcing costs of
the second job. The jobs in the order i define a fixed routing σi with linear
precedence relations. A routing σi is a sequence of pairs (Rij , βij) where Rij

is the resource and βij is the processing time of job j in the order type i.

Decision making

Every time period a decision must be taken on the collected orders. Orders are
chosen one by one from the arrival list. Besides, we should choose whether to
outsource or not. The possible decisions are depending on the capacity profile,
the list of accepted jobs waiting for service, and the limit in the total amount
to outsource every period.

Accepted orders are totally or partially accepted. Total acceptance of an
order means that both jobs of the order will be processed in the shop. Partial
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acceptance means that the first job of the order will be processed in the shop
and the other one will be outsourced.

At the end of the decision period, the situation is similar to the situation in
Chapter 5.

6.1.3 Due-time and price negotiation

Here we consider together with the order acceptance decision, the selection of
a due-time for the accepted orders. Associated to each due-time option there
is a reward for acceptance. Furthermore there is a certain probability that the
customer will agree on the selection of that option.

For simplicity reasons we consider each order with two due-time options.
A decision has two parts, as before one is which orders to accept, and the
other part is for each of the accepted orders which due-time to agree on. A
substantial difference is that the customer could decide to quit the system.

Order Types

There is a finite number n of order types that arrive continuously over time. The
orders are subdivided into at most two jobs. The order type i is characterized
by the arrival rate (λi), a routing ( σi), and a set of due-time options (τ i). The
jobs in the order i define a fixed routing σi with linear precedence relations. A
routing σi is a sequence of pairs (Rij , βij), where Rij is the resource and βij is
the processing time of job j in the order of type i. We consider here that each
order has a set τ i of two options for the due-time. We put τ i = (φi1, φi2), and
the triplet φil = (til, pil, ril) where til, pil, ril are the due-time, the probability
that the customer will agree with the option, and the immediate reward upon
acceptance and customer agreement, is the option l for the order type i. Here
l = 1, 2.

Decision making

Every time period a decision must be taken on the collected orders. Orders are
chosen one by one from the arrival list. Besides, we should choose a due-time
option. The possible decisions are depending on the capacity profile and the
list of accepted jobs waiting for service.

Accepted orders are only temporarily accepted. Once the decision period
finishes, the customers may disagree with the chosen due-time options for their
orders. In such a case the orders go out of the system as rejected orders. If a
customer agrees with the selected option, the order is definitely accepted.

At the end of the decision period, after the customer’s agreement or dis-
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agreement, the situation is similar to the situation in Chapter 5.

First, in the next section, we give general ideas about the SMDPs that we
define to model the dynamics of the environment in which our RL-agents are
situated. We define three similar but different models, one for each problem.
Then we discuss some aspects of the implementations of the RL-agents.

6.2 The SMDP models

These problems can be modeled as Semi Markov Decision Problems. Since we
use the same integrated simulation environment as in Chapter 5, the models
are similar to the one in that chapter.

The state of the system is defined by s = (k,C), where k = (k1, ..., kN ) is the
order list and ki represents the number of orders of type i requesting service.
For each order type i we restrict the maximum number of orders in the order
list to mi. This number may be determined by the arrival probabilities or by
the limited capacity. In the routing and the due-time negotiation problems we
use the same definition of the capacity profile as in Chapter 5, C = (EP, JL).
EP = (ejt) ∈ ZMH is the execution profile and by ejt we refer to the occupied
capacity in the resource j at stage t of the planning horizon. JL is a table
containing information of all the jobs of the accepted orders which are still
waiting to be served. The information in the job-list table includes the release-
time, the due-time, the expected processing time, the resource, the predecessors
and successors of each job and a field indicating if the job is active or not.

For the outsourcing problem we add another element to the capacity profile
(out), to keep record of the total amount outsourced at each time period. This
amount might be limited.

The action is a pair a = (i, o) specifying the type of order i = 1...n and
the option o = 1, 2 for the chosen order. In the three problems there are two
options for each chosen order, as is shown in Table 6.1. Furthermore we define
the action a = (0, 0) as rejection.

Problem Options
Option 1 Option 2

Routing route 1 route 2
Outsourcing outsource do not outsource
Due-time Neg. due-time 1 due-time 2

Table 6.1: Options for the accepted orders in the routing, outsourcing and due-time
negotiation problems

The set of allowed actions A(s) for a state s = (k,C) is defined as usual.
Action a = (i, o) is allowed if order type i is present in the order list k and
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capacity is available for at least one occurrence of that order type with option o.
Rejection of the complete order list is always an option, i.e., A(s) = {(i, o)|i ∈
[1..N ], o = 1, 2, ki 6= 0, EDDL(C, i, o) is possible}

S
{0, 0}.

The one step state transition from the current state s is described in Table
6.2, Table 6.3 and Table 6.4. The transitions are similar to the transitions in
Chapter 5. Here the action has a new component (the option o), and the capac-
ity profile evolution is always deterministic since we do not consider stochastic
processing times. Hence, penalties due to unexpected capacity excess - as in
Chapter 5 - will never occur. This simplifies the transition probabilities.

Table 6.2 describes the dynamics for the routing problem. The first column
represents all the characteristics defining a state transition from the current
state s. The other two columns represent these characteristics, given that
the action i in the current state is different from rejection (second column),
respectively is rejection (third column).

current state (s) (k,C) = (k,EP, JL)

action a = (i, o) i 6= 0, o 6= 0 (0, 0)
next state (s0) (k − ei, EP, JL+Oio) (k0, EP 0, JL0)

rew(s, a) ri 0
d(s, a) 0 1

Pr(s, a, s0) 1 Pr{k0}

Table 6.2: Dynamics of transition from the current state s in the routing problem

In case an order of type i is chosen (i 6= 0), an immediate reward ri is
received independently of the route, and a deterministic transition to the next
state s0 occurs (Pr(s, a, s0) = 1). Note that there is a time off at this moment,
i.e., the elapsed time d(s, a) is 0. The order is then removed from the arrival
list so the new arrival list is given by k− ei where ei is a unit vector with 1 in
the position i. The new job-list is updated including the jobs of the accepted
order with the chosen route o, and the capacity profile remains unchanged. By
Oio we refer to an order of type i using the fixed route o.

In case the job list is rejected (a = (0, 0)) the decision process at the current
time is finished; there is a time on until the next decision epoch. The new order
list k0 is determined by the order arrival process. The new capacity profile
C 0 = (EP 0, JL0) is updated according to the loading plan. The immediate
reward is zero. Note that the transition probability only depends on the arrival
process since it is the only stochastic process going on.

Table 6.3 describes the dynamics for the outsourcing problem. The transi-
tions for this problem are very similar to the routing problem. The first column
represents all the characteristics defining a state transition from the current
state s. The other three columns represent these characteristics given that the
action a in the current state is choosing an order with outsourcing (second
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column), choosing an order without outsourcing (third column), respectively is
rejection (fourth column).

current state (s) (k,C) = (k,EP, JL, out)

action a = (i, o) i 6= 0, o = 1 i 6= 0, o = 2 (0, 0)
next state (s0) (k-ei,EP,JL+Ji1,out+wi2) (k-ei,EP,JL+Oi,out) (k0, EP0,JL0,0)
rew(s, a) ri1 ri2 0
d(s, a) 0 1

Pr(s, a, s0) 1 Pr{k0}

Table 6.3: Dynamics of transition from current state s in the outsourcing problem

In case an order of type i is chosen (i 6= 0), with outsourcing (o = 1)
or without outsourcing (o = 2), an immediate reward rio is received and a
deterministic transition to the next state s0 occurs (Pr(s, a, s0) = 1), during a
time off, (d(s, a) = 0). The order is then removed from the arrival list so the
new arrival list is given by k−ei where ei is a unit vector with 1 in the position
i. The new job-list is updated including only the first job of the chosen order
(JL+ Ji1) in case of outsourcing, and the complete chosen order (JL+Oi) in
the case without outsourcing. Note that in this problem the capacity profile has
a new component (out) which indicates the amount of capacity outsourced in
the decision moment. In case an order type i is chosen (i 6= 0), with outsourcing
(o = 1) the processing time wi2 of the second job of the order is added to the
out component of the capacity profile. In case o = 2 then the component out
remains the same.

In case the job list is rejected (a = (0, 0)) the transition is similar to the
transition in the same case of the routing problem. Only in this case the out
component of the capacity profile is zero so new jobs may be outsourced.

Table 6.4 describes the dynamics for the due-time negotiation problem.
This problem behaves quite different, compared to the others, because of the
possibility that the customer does not agree with the chosen action, so all the
transitions are stochastic.

current state (s) (k,C) = (k,EP, JL)

action a = (i, o) i 6= 0, o 6= 0 (0, 0)
next state (s0) (k − ei, EP, JL+Oio) (k − ei, EP, JL) (k0, EP 0, JL0)

R(s, a) rio 0 0
d(s, a) 0 1

Pr(s, a, s0) pio 1− pio Pr{k0}

Table 6.4: Dynamics of transition from current state s in the due-time negotiation
problem

In case an order type i is chosen (i 6= 0) with due-time option o (o = 1,
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or o = 2), there is a stochastic transition to the next state s0 depending on
whether the customer agrees with the chosen option or not, during a time off
(d(s, a) = 0). The order is then removed from the arrival list, so the new
arrival list is given by k − ei, where ei is a unit vector with 1 in the position
i, and the execution profile remains unchanged. The customer agrees with the
chosen due-time option with probability pio in which case there is an immediate
reward rio and the new job list is updated including the chosen order with the
corresponding option (JL+Oio). The customer does not agree with the chosen
due-time option with probability 1− pio in which case there is zero immediate
reward and the new job list remains unchanged.

In case the job list is rejected (a = (0, 0)) the transition is identical to the
transition in the same case of the routing problem

In these three models the objective is to find a deterministic policy π:

π(s) =

½
(i, o)
(0, 0)

i ∈ 1..N , o ∈ 1..2 selecting order type i with option o
reject the job-list

which maximizes the performance of the system. We call this an OA+option
policy. The performance of the system is measured as the expected value of
the total discounted reward. The corresponding Bellman equation for the state
value function V π is given by:

V π(s) =rew(s, π(s)) + γd(s,π(s))
X
s0

Pr(s, π(s), s0)V π(s0),

where γ is the discount factor and d(s, i) is the elapsed time as introduced
before. The optimal action value function Q∗ in this case satisfies:

Q∗ (s, i)=rew(s, i) + γd(s,i)
X
s0

Pr(s, i, s0)max
i0

Q∗(s0, i0)

and an optimal policy π∗(s) can be determined by: π∗(s) = argmax
i
Q∗(s, i).

6.3 Reinforcement Learning approach

Here we discuss the application of Reinforcement Learning to the problems
described above. We use QL methods that aim to approximate the optimal
Q-value function as discussed in Chapter 2. The RL-agent should learn an
OA+option policy (i.e., OA augmented with another decision) while interacting
with the environment. We focus here on traditional Q-learning using ANN, as
introduced in Chapter 2.

Since here we use a similar environment as in Chapter 5, there is also the
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problem with the complexity of the state representation. Therefore we use here
the same idea of features of the state, see Section 5.3. That means we use the
set of features (kr, L) as observations of the state, that are received by the
RL-agent during the interaction with the environment. Here kr is a feature
of k which also contains some information about the capacity profile: it has a
zero in the components corresponding to orders that do not fit in the capacity
profile. The loading profile L is a feature of the capacity profile which combines
information from the execution profile EP and the job list JL.

The structure of the RL-agent is also similar to the one in Chapter 5, see
Section 5.3. The only difference is in adding one integer input more corre-
sponding to the option in the chosen action. For the tuning of the parameters
of the RL-agents we use here the strategy discussed in Section 5.3.1 with the
( θ, μ, ν)-learning schedule.

6.4 Experimental results

In this section we present the application of RL to three cases, one per each
type of problem presented in this chapter. In all cases we compare the results
of the RL-agents against the results obtained with some heuristics from the
general heuristics as presented in Section 4.3. First we discuss how we use such
a general class of heuristics in these problems, then we present the cases.

All these heuristics use partial information about the problem like rewards,
capacity request, capacity profile; they do not take into account the arrival
rates, and specific routings for example. Defining heuristics that consider all
these factors is a difficult task. Unlike these heuristics, the RL-agent has a
learning mechanism, which we expect to be useful for extracting the implicit
information from the state transitions in order to learn a good OA-policy.

The RL-agents are trained using the ( θ, μ, ν)-learning schedule as explained
in Section 5.3.1. Furthermore, we apply the technique explained in Section 4.4.1
in order to interpret the policy learned by the RL-agents. As a performance
measure we use AR20000, the total average reward accumulated per unit of time
up to the time corresponding to iteration 20000.

6.4.1 Heuristics

In these three problems the decisions have two parts: choosing orders (OA),
and choosing the option for each chosen order (option).

In the last two problems (outsourcing and due-time negotiation), both parts
of the decision define the immediate reward upon acceptance for each order.
Therefore we may use the same general heuristics as used in the previous models
in order to take decisions. Remember that these heuristics are profit oriented,
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defining preference relations according to the reward per requested unit of
capacity for a job (i.e., rj

wj for job type j)

That is not the case in the first problem (routing) where the immediate
reward is defined by the type of order independently of the route. For the
OA part we can use the same general heuristics as used in the previous models,
and for the routing part we choose the route that gives the minimum makespan
(MM) in the loading plan.

The heuristics are OrderQuality(b) and CapacityLevel( ρ), see Section 4.3.
Furthermore we include two other heuristics: GREEDY and RANDOM. The
GREEDY heuristic takes the decision with highest reward per requested unit of
capacity for which there is enough capacity. This heuristic is similar to Capac-
ityLevel(1) or OrderQuality(0) in case all rewards are positive. The RANDOM
heuristic, chooses at random as long as there is enough capacity.

6.4.2 Routing problem

This is a case with 4 types of orders and 2 types of resources. The planning
horizon is 5 days (H = 5) with 8 working hours a day (Cmax = 8). All types
of orders have 2 jobs, one at each resource. Table 6.5 shows the data of this
case. The orders of type i follow a Poisson arrival with parameter λi in between
decision moments. The processing time vector βi indicates the processing time
needed for each job in the order i. Remember that job j in order i must be
done in resource j, and the only constraint is that two jobs of the same order
are not simultaneously processed. The table also indicates the reward upon
acceptance ri, the due-time ti and the maximum number of arrivals per day
mi for each type of order. Decisions should be taken daily, on which orders to
accept from the pool of orders that have arrived in the last 24 hours. Orders
that are not accepted in that day will go out of the system. The order type 1 is
the least frequent but the more profitable one, so a good policy might always
accept this type of order. The orders of type 2 and 3 have the same arrival
rate and processing time, but an order of type 2 is a little more profitable.
The order type 4 is the least profitable order, but since it has the smallest
processing time, and it is the most frequent, it could be convenient to accept
it sometimes.

orderi λi βi ri ri/βi ti mi
Capacity
Profile

1 1 (32, 8) 200 5 120 1 H = 5
2 3 (16, 8) 116 4.8 72 1
3 3 (8, 16) 108 4.5 72 1 Cmax = 8
4 5 (8, 8) 32 2 120 4

Table 6.5: Description of the case in the routing problem
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Note that in this problem the components of the capacity profile would take
only the values 0 and 8 because of the values of the processing times and Cmax.
Therefore the cardinality of the observation space is |S| = 5 ∗ 213 = 40960.

Heuristics

Table 6.6 shows results of the heuristic policies for this case. We consider
for simplicity CapacityLevel(ρ) policies with the same safety level for both
resources and all orders, and also CapacityLevel(1, ρ), policies that consider
level of safety 1 for order type 1 and ρ for the rest of the orders. The Greedy
policy uses safety level 1, the orders are accepted as long as capacity is available.
The OrderQuality(4) policy only chooses order types 1, 2 and 3 in that order.
These are the three more profitable orders.

scenario AR20000
Greedy 32.04
CapacityLevel(0.9) 32.09
CapacityLevel(0.7) 32.91
CapacityLevel(0.5) 32.39
CapacityLevel(0.3) 15.94
Random 32.03

scenario AR20000
CapacityLevel(1, 0.9) 32.09
CapacityLevel(1, 0.7) 33.15
CapacityLevel(1, 0.5) 51.77
CapacityLevel(1, 0.3) 48.40
CapacityLevel(1, 0.1) 47.53
OrderQuality(4) 64.50

Table 6.6: Heuristics results for the case in the routing problem

The best heuristic is OrderQuality(4). Its performance is substantially
better than the other heuristics (approximately 24.6% from the best of the
other heuristics).

RL-agents

Table 6.7 shows results of some RL-agents trained for this case. RL-agents are
trained sequentially according to the (θ, μ, ν)-methodology described in Section
5.3.1.

scenario AR20000
NNθ350μ13ν12 33.95
NNθ400μ14ν12 73.94
NNθ450μ15ν14 74.11

Table 6.7: Results of RL-agents in the routing problem

The best RL-agent (NNθ450μ15ν14) outperformsOrderQuality(4) by 14.9%
and the Greedy by 131.3%.
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Learning the RL-policy

Here we analyze the policy learned by the RL-agent NNθ450μ15ν14 using
19882 non-trivial iterations (where rejection was not a trivial decision). Note
that in this problem there are 9 different actions: rejection and two routes
for each of the four types of orders {(i, o) : i = 1...4; o = 1, 2}

S
{0, 0}. Us-

ing the simple data mining technique that we explained in Section 4.4.1, we
obtain the general preference relation for the zero level of the decision tree
φ0 =((2,1)(2,2)(3,1)(3,2)(1,1)(1,2)). Recall that we do not write in the prefer-
ence relation the actions with less preference than the rejection action (0, 0).
The matrix of selected/possible actions Aφ0 is shown in Table 6.8.

Selected Possible Actions
Actions (2,1) (2,2) (3,1) (3,2) (1,1) (1,2) (0,0) (4,1) (4,2)
(2,1) 175 3 165 1 116 2 175 175 175
(2,2) 0 3812 0 3461 0 2428 3812 3808 3808
(3,1) 22 0 207 20 18 17 207 203 203
(3,2) 0 0 0 3704 0 116 3704 3651 3651
(1,1) 4 0 6 0 11 0 11 11 11
(1,2) 0 17 0 0 0 28 28 27 27
(0,0) 0 0 0 0 0 0 11933 11895 11933
(4,1) 0 0 0 0 0 0 7 7 7
(4,2) 0 0 0 0 0 0 5 4 5

Table 6.8: Selected action against possible actions in 17546 iterations of the RL-
agent in the routing problem

The policy obtained from the preference relation φ0 = ((2,1)(2,2)(3,1)(3,2)
(1,1)(1,2)) makes 61 errors, which makes 99.7% of quality, with respect to the
policy learned by the RL-agent. So φ0 defines an excellent approximation to
the RL-policy. In this preference relation, orders of type 2 and 3 have higher
priority than orders of type 1, and there is a clear tendency not to accept orders
of type 4.

As for the routes the most frequent is route 2. But every time when route 2
was chosen there was not the possibility of choosing route 1. A similar situation
exists for the cases where route 1 was chosen, except for a few exceptions. So
we can not really say that there is a real preference for a route. Actually setting
a preference for route 1 gives a smaller error with respect to the learned policy.

Note that this policy does not give higher priority to orders of type 1,
which is the more profitable one. This order introduces a disequilibrium in the
resources workload, demanding much more use of resource 1. Orders type 2 and
3 have smaller profitability than order type 1 but because of the distribution
of their work request, they seem to make a better use of the capacity when
combined. Furthermore they have higher arrival rates.
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6.4.3 Outsourcing problem

This is a case with a two-resources shop where 4 types of orders arrive according
to independent Poisson arrivals. Table 6.9 shows the data of this case. The
planning horizon is 6 days (H = 6) with 8 working hours a day (Cmax = 8).
The order type i is characterized by the arrival rate (λi) in between decision
moments, a due-time (ti), a routing (σi), and a set of immediate rewards upon
acceptance (ϕi) for the outsourcing options. The processing times βij and the
due-times ti are given in hours. Decisions should be taken daily, on which orders
to accept from the pool of orders that have arrived in the last 24 hours. Orders
that are not accepted in that day will go out of the system. The maximum
amount that is possible to outsource per resource every day is 16 hours, i.e.,
lo = 16.

The order type 1 is the least frequent but the more profitable one; particu-
larly with the outsourcing option 2 (not outsourcing). For all types of orders it
holds that it is more profitable not to outsource the order (outsourcing option
2). Still there may be cases where choosing to outsource (the first option) could
be a better alternative in the long run. The order type 4 is the least profitable
order, but since it has the smallest processing time, and it is the most frequent,
it could be convenient to accept it sometimes.

orderi λi σi = [(Rij , βij)] ti ϕi = (ri1, ri2) mi
Capacity
Profile

1 1 [(1, 24), (2, 8)] 96 (132, 192) 1
2 2 [(1, 8), (2, 8)] 72 ( 20, 48) 2 H = 6
3 2.3 [(2, 16), (1, 8)] 120 ( 45, 70) 2 Cmax = 8
4 4 [(2, 8), (1, 8)] 144 ( 12, 32) 5 lo = 16

Table 6.9: Description of the case in the outsourcing problem

Note that in this problem the components of the capacity profile would take
only the values 0 and 8 because of the values of the processing times and Cmax.
Therefore the cardinality of the observation space is |S| = 33 ∗ 214 = 442 368.

Heuristics

Table 6.10 shows results of the heuristic policies for this case. We consider
for simplicity CapacityLevel(ρ) policies with the same safety level for both
resources and all orders, and also CapacityLevel(1, ρ), policies that consider
level of safety 1 for order type 1 and ρ for the rest of the orders. The Greedy
policy uses safety level 1, the orders are accepted as long as capacity is available.
The OrderQuality(6) policy only chooses order type 1 without outsourcing
(option 2) which is the more profitable action. The policy that allows to choose
both options for orders of type 1 is OrderQuality(5.5), but for this case it gave
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exactly the same result as OrderQuality(6). The OrderQuality(3) policy only
chooses order type 1 and 2 with both types of outsourcing options.

scenario AR20000
Greedy 32.05
CapacityLevel(0.9) 31.98
CapacityLevel(0.7) 37.46
CapacityLevel(0.5) 42.93
CapacityLevel(0.4) 40.40
CapacityLevel(0.3) 31.10
Random 33.88

scenario AR20000
CapacityLevel(1, 0.9) 31.98
CapacityLevel(1, 0.7) 37.46
CapacityLevel(1, 0.5) 43.6
CapacityLevel(1, 0.3) 38.2
OrderQuality(6) 53.83
OrderQuality(5.5) 53.83
OrderQuality(3) 51.61

Table 6.10: Heuristics results for the case in the outsourcing problem

The best of these heuristic policies is OrderQuality(6).

RL-agents

Table 6.11 shows results of some RL-agents trained for this case. RL-agents are
trained sequentially according to the (θ, μ, ν)-methodology described in Section
5.3.1. The table only shows the results of the best RL-agents for some values of
θ. TheNNθ400μ15ν13 RL-agent outperforms by far all the previous heuristics,
OrderQuality(6) by 31.97% and Greedy by 121.6%.

scenario AR20000
NNθ100μ7ν7 40.77
NNθ250μ11ν10 50.72
NNθ300μ13ν13 54.07
NNθ400μ15ν13 71.04

Table 6.11: Results of RL-agents in the outsourcing problem

Learning the RL-policy

Here we analyze the policy learned by the RL-agent NNθ400μ15ν13 using
19758 non-trivial iterations (where rejection was not a trivial decision). Us-
ing the simple data mining technique we explained in Section 4.4.1 we obtain
the general preference relation for the zero level of the decision tree φ0 =
((1, 2) (1, 1)). The matrix of selected/possible actions Aφ0 is shown in Table
6.12.
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Selected Possible Actions
Actions (1,2) (1,1) (0,0) (2,2) (2,1) (3,1) (3,2) (4,1) (4,2)
(1,1) 3043 3043 3043 2641 2645 2725 2725 2891 2981
(1,2) 1 4 0 0 4 0 0 4 4
(0,0) 0 0 11212 3868 3868 4311 4311 11103 11103
(2,2) 0 0 1522 1522 1522 1370 1370 1500 1500
(2,1) 0 0 48 25 48 8 8 43 43
(3,1) 0 0 2559 34 34 2559 2559 2510 2510
(3,2) 0 0 357 0 0 357 357 351 351
(4,1) 0 0 886 43 43 39 39 886 886
(4,2) 0 0 127 19 19 45 45 127 127

Table 6.12: Selected action against possible actions in 19758 iterations of the RL-
agent NNθ400μ15ν13 in the outsourcing problem

The policy obtained from the preference relation φ0 = ((1, 2) (1, 1)) makes
5500 errors, which makes 71.4% of quality, with respect to the policy learned
by the RL-agent. So φ0 defines a policy that only chooses orders of type 1, and
it is not a good approximation of the policy learned by the RL-agent. Such a
policy resembles the heuristic OrderQuality(5.5).

Table 6.13 summarizes a heuristic policy that better approximates the RL-
policy. The heuristic mainly considers branching according to the total amount
of loaded capacity TL1 and TL2 at each resource respectively, but it also con-
siders distribution of capacity according to the loading plan L and amount of or-

ders in the order-list k in some cases. Recall from Chapter 5 that TLi =
HP
j=1

Lij

where L is the MxH matrix representing the loading profile. We use the set
definition Θ = {k |k3 = 2, k4 ∈ [1, 4]} to describe some cases with a particular
order list. The columns in the table specify the number of the node, the de-
scription of the node, the preference relation, the number of transitions covered
by the node, and the number of errors.
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N0 States
preference
relation

cases errors

1 All states (1, 2),(1, 1) 3047 1
2 TL1=TL2=0 (3, 1),(2, 2) 122 63
3 TL1=0,TL2=8 (2, 2),(3, 2) 1515 0
4 (TL1=0,TL2=16) or

TL1=TL2=8,L11=8,L21=0,k=(0,0,2,5)
or (TL1=40,TL2=24,L23=0) (4, 2) 75 13

5 TL1=8,TL2=0 (3, 1),(2, 1) 15 5
6 (TL1=TL2=8,L11=0) or

(TL1=TL2=16,L11=8,L12=0) (2, 2) 20 1
7 (TL1=8,TL2=16,L11=0)

or (TL1=TL2=16,L11=0) (2, 2),(3, 2) 174 3
8 TL1=8,TL2=24 (2, 2),(2, 1) 30 0
9 (TL1=16,TL2=0 )or

(TL1=TL2=24,L11=8,L23=0)
or (TL1=32,TL2=8,L21=0)
or (TL1=32,TL2=24,L23=8) (4, 1) 668 3

10 (TL1=16,TL2=8,L21=0) or
(TL1=24,TL2=16,L24=8) (3, 1),(4, 1) 2670 1

11 TL1=16,TL2=8,L21=8 (2, 1),(4, 1) 5 1
12 (TL1=16,TL2=24,L11=0) or

(TL1=TL2=24,L11=0) or
(TL1=24,TL2=32,L11=0 )or
(TL1=24,TL2=8,L22=8) (2, 1) 22 0

13 TL1=16,TL2=32,L11=0 (2, 1) , (4, 2) 20 4
14 (TL1=24,TL2=0,L11=0) or

(TL1=24,TL2=8,L24=8,k ∈ Θ) or
(TL1=32,TL2=8,L21=8) (3, 1) 197 1

15 (TL1=24,TL2=8,L21=8 )or
(TL1=24,TL2=16,L22=8) (3, 2) , (4, 1) 27 0

16 TL1=24,TL2=8,L24 = 8, k /∈ Θ (3, 2) , (4, 2) 20 0
17 TL1=32,TL2=16,L22=8 (3, 2) 10 0
18 TL1=32,TL2=16,L24=8 (3, 1) , (4, 2) 38 3
19 Otherwise (0, 0) 11212 8

Table 6.13: Branching the RL-policy NNθ400μ15ν13 in the outsourcing problem.
We call this policy HeuNN400
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The table leads us to a heuristic policy (HeuNN400) represented by a hi-
erarchical set of decision rules. This heuristic policy has quality 99.36% with
respect to the policy learned by the RL-agent. However, a one way-Anova test
shows significant difference between the performance of these two policies, see
Table 6.14. For this reason we consider these two policies as non-robust poli-
cies. By non-robustness here we mean that small differences in the two policies
leads to significant difference in their performances.

Source SS df MS F P
Column 1.061 1 1.061 16.640 0.0035
Error 0.510 8 0.064
Total 1.571 9

Table 6.14: Results of a one-way ANOVA test for the RL-agent and a heuristic
elaborated on the RL-learned policy

Still both policies achieve better performance than any of the previous
heuristics. Table 6.15 shows the average results on 5 samples of the HeuRL
and the RL-agent.

scenario AR20000
NNθ400μ15ν13 70.99
HeuRL400 70.34

Table 6.15: Average results on 5 samples for the RL-agent and a heuristic elaborated
on the RL-learned policy

Furthermore, the heuristic HeuRL400 offers some general ideas about the
learned RL-policy NNθ400μ15ν13.

1. Acceptance of orders of type 1 is the most preferred preference, and if
there is enough capacity, it is preferred not to outsource it.

2. There is in general opportunity to choose orders of type 1 only when
L1 ≤ 16.

3. In case L1 ≤ 16 and it is not possible to choose orders of type 1, there
is a certain strategy to occupy capacity (in order not to lose it) in a way
that does not limit a possible acceptance of orders of type 1 in the near
future. This is achieved by a specific selection of orders of type 2 and 3
only when L11 = 0, and accepting orders of type 3 and 4 with outsourcing
when L21 = 0.

4. The outsourcing option (option 1) is preferred in cases where there is the
possibility of losing capacity in one resource and the other one has a very
high utilization; or when the capacity is reserved for a more profitable
order as orders of type 1.
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This RL-agent is also characterized for the acceptance of orders even in cases
with high utilization over the planning horizon. Note for example the cases in
the table where orders of type 4 may be accepted. This high utilization could
explain the non-robustness of the heuristic HeuRL400.

Learning another RL-policy Despite of the good performance of the RL-
agent NNθ400μ15ν13, we decided to further train other RL-agents on this
case. The performance did not improve too much but we obtained a more
robust heuristic policy. Specifically we analyze here the policy learned by the
RL-agent NNθ700μ21ν18. This agent obtains an Average Reward of 71.47
after training, outperforming all the previous heuristics, OrderQuality(6) by
32.8% and Greedy by 122.9%.

Using the simple data mining technique that we explained in Section 4.4.1,
we obtain the general preference relation for the zero level of the decision tree
φ0 = ((1, 2) (1, 1)). The matrix of selected/possible actions Aφo is shown in
Table 6.16 for a total of 19881 non-trivial iterations.

Selected Possible Actions
actions (1,2) (1,1) (0,0) (3,1) (2,2) (2,1) (4,1) (4,2) (3,2)
(1, 2) 3025 3025 3025 2396 2345 2631 2963 2963 2396
(1, 1) 0 111 111 0 0 102 108 108 0
(0, 0) 0 0 11393 3658 3150 3859 10992 11076 3658
(3, 1) 6 6 3285 3285 647 647 3244 3244 3285
(2, 2) 0 0 1362 645 1362 1362 1316 1316 658
(2, 1) 0 0 247 93 115 247 245 245 93
(4, 1) 49 49 278 78 73 73 278 278 78
(4, 2) 0 0 180 1 0 179 166 180 1
(3, 2) 0 0 0 0 0 0 0 0 0

Table 6.16: Selected action against possible actions in 19758 iterations of the RL-
agent NNθ700μ21ν18 in the outsourcing problem

The policy obtained from the preference relation φ0 = ((1, 2) (1, 1)) makes
5352 errors, which makes 73.1% of quality, with respect to the policy learned
by the RL-agent.

Table 6.17 summarizes a heuristic policy that better approximates the RL-
policy. The heuristic mainly considers branching according to the total amount
of loaded capacity TL1 and TL2 at each resource respectively, but it also con-
siders distribution of capacity according to the loading plan L and amount of
orders in the order list k in some cases. We use the set definitions:

∆ = {k |k2 = 1, k4 ∈ [1, 2]}
Λ = {k |k3 ∈ [1, 2] , k3 + k4 ≥ 3} .
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to describe some cases with a particular order list. The columns in the table
specify the number of the node, the description of the node, the preference
relation, the number of transitions covered by the node, and the number of
errors. The table leads us to a heuristic policy (HeuNN700) represented by a
hierarchical set of decision rules which have 96.88% of quality, with respect to
the policy learned by the RL-agent.

N0 States
preference
order

cases errors

1 TL1=TL2=0 (4, 1) , (1, 2) , (3, 1) 164 83
2 All states (1, 2) , (1, 1) 3099 0
3 TL1=0,TL2=8 (3, 1) , (2, 2) , 1352 494
4 TL1=0,TL2=16 (2, 1) , (3, 1) 160 36
5 TL1=0,TL2=24 (2, 2) , (2, 1) 693 0
6 TL1=8,TL2=0 or

TL1=16,TL2=8,L23=8 or
or TL1=24,TL2=8, k4 6=5 (3, 1) , (4, 1) 224 2

7 TL1=TL2=8,L11=0 or
TL1=8,TL2=16,L12=8 (2, 2) 114 5

8 TL1=8,TL2=16,L13=8 (2, 2) , (3, 1) , (4, 1) 27 0
9 TL1=8,TL2=24,L11=0 (2, 1) 24 0
10 TL1=8,TL2=32,L11 = 8, k ∈ ∆ (4, 2) 179 0
11 TL1=16=TL2,L11=0,L22=8 or

TL1=24,TL2=16,L24 = 8, k ∈ Λ (3, 1) 2108 0
12 TL1=16=TL2,L23=8,k4 6=5 or ,

TL1=24TL2=8,k4=5 or
TL1=24,TL2=16,L23=8 (4, 1) 169 2

13 Otherwise (0.0) 11393 0

Table 6.17: Branching the RL-policy NNθ700μ21ν18 in the outsourcing problem.
We call this policy HeuNN700

The average results on 5 samples of HeuNN700 and the RL-agentNNθ700μ21ν18
are shown in Table 6.18.

scenario AR20000
NNθ700μ21ν18 71.382
HeuRL 71.255

Table 6.18: Average results on 5 samples for the RL-agent and a heuristic elaborated
on the RL-learned policy

A one way-Anova test did not show significant difference between the per-
formances of these policies. See Table 6.19.

We can infer the following analogies and differences with respect to the
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Source SS df MS F P
Column 0.0408 1 0.0408 1.227 0.300
Error 0.266 8 0.033
Total 0.307 9

Table 6.19: Results of a one-way ANOVA test for the the RL-agent and a heuristic
elaborated on the RL-learned policy

policy learned by the previous RL-agent NNθ400μ15ν13.

1. As before, action (1,2) is preferred over (1,1). Both actions are preferred
over all the others in most of the cases. From Table 6.16 there are 55
cases in which other actions are chosen ((4,1),(3,1)) instead of choosing
orders of type 1. This may look like an error on the learned policy, but
a more detailed analysis reveals that these 55 cases occur when all the
capacity is free (L1 = L2 = 0), and right after choosing one of the actions
((4,1),(3,1)) an order of type 1 was chosen.

2. As before, action (2,2) is preferred over (2,1) but there is a decrement in
the number of cases where (2,2) is chosen and an increment in the cases
where (2,1) is chosen.

3. There is an increment in the number of cases where (3,1) is chosen, and
(3,2) is never chosen.

4. As before, action (4,1) is preferred over (4,2) but there is a noticeable
decrement on the selection of (4,1) and though there is also a slight in-
crease in choosing (4,2), the final outcome is a decrement in the selection
of orders of type 4.

The general strategy of this RL-agent is very similar to the one used by the
RL-agent NNθ400μ15ν13, which is to prioritize orders of type 1 and obtain a
high utilization of the capacities. However some differences in strategy allow
this RL-agent to increase the possibilities of choosing orders of type 1. Some
of the noticed differences are the following:

• increase in the cases of outsourcing,

• reduce the cases of complete acceptance of orders of type 2 and 3,

• reduce the cases of choosing orders of type 4.

A one way-Anova test (Table 6.20) shows significant difference between the
performances of the two learned RL-policies (NNθ400μ15ν13 andNNθ700μ21ν18).

However, both RL-policies are better than the best general heuristic we
could define for this problem (OrderQuality(6)). The RL-agentNNθ700μ21ν18
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Source SS df MS F P
Column 0.383 1 0.383 8.684 0.018
Error 0.352 8 0.044
Total 0.735 9

Table 6.20: Results of a one-way ANOVA test for the two RL-agents NNθ400μ15ν13
and NNθ700μ21ν18

performs slightly better than the RL-agent NNθ400μ15ν13 and it leads also
to a more robust policy.

6.4.4 Due-time and price negotiation

This is a case with a two-resources shop where 4 types of orders arrive according
to independent Poisson arrivals. Table 6.21 shows the data of this case. The
planning horizon is 6 days (H = 6) with 8 working hours a day (Cmax = 8). The
order type i is characterized by the arrival rate (λi), a routing ( σi), and a set
of due-time and reward (φi) options. Recall that the triplet φil = (til, pil, ril) is
the option l for the order type i, and til, pil, ril are the due-time, the probability
that the customer will agree with the option, and the immediate reward upon
acceptance and customer agreement. Here we consider two options (l = 1, 2) .

The processing times βij and the due-times til are given in hours. Decisions
should be taken daily, on which orders to accept from the pool of orders that
have arrived in the last 24 hours. Orders that are not accepted in that day will
go out of the system.

The order of type 1 is the least frequent but the more profitable one; par-
ticularly with the due-time option 1. For all types of orders it holds that the
first due-time option is more profitable than the second one. Still there may
be cases where choosing the second option could be a better alternative in the
long run. The order type 4 is the least profitable one, but since it has the
smallest processing time, and it is the most frequent, it could be convenient to
accept it sometimes. The customers will always agree with the selection of the
first due-time option (that may be the one they come with) and there is a high
probability they will accept the second due-time option.

orderi λi σi φi ni
Capacity
Profile

1 1 [(1, 24), (2, 8)] [(96, 192, 1), (144, 112, 0.9)] 1
2 2 [(1, 8), (2, 8)] [(72, 48, 1), (144, 38, 0.8)] 5 H = 6
3 2.3 [(2, 16), (1, 8)] [(120, 70, 1), (144, 68, 0.85)] 2 Cmax = 8
4 4 [(2, 8), (1, 8)] [(96, 32, 1), (144, 24, 0.95)] 5

Table 6.21: Description of the case in the due-time problem
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Note that in this problem the components of the capacity profile would take
only the values 0 and 8 because of the values of the processing times and Cmax.
Therefore the cardinality of the observation space is |S| = 63 ∗ 212 = 884 736.

Heuristics

Table 6.22 shows results of the heuristic policies for this case. We consider
for simplicity CapacityLevel(ρ) policies with the same safety level for both
resources and all orders, and also CapacityLevel(1, ρ), policies that consider
level of safety 1 for order type 1 and ρ for the rest of the orders. The Greedy
policy uses safety level 1, the orders are accepted as long as capacity is available.
The OrderQuality(6) policy only chooses order type 1 with the first due-time
option which is the more profitable action. The policy that allows to choose
both options for orders of type 1, is OrderQuality(3.5).

scenario AR20000
Greedy 33.62
CapacityLevel(0.9) 37.83
CapacityLevel(0.7) 41.58
CapacityLevel(0.5) 44.49
CapacityLevel(0.4) 41.53
CapacityLevel(0.3) 22.86
Random 33.21

scenario AR20000
CapacityLevel(1, 0.9) 37.83
CapacityLevel(1, 0.7) 41.39
CapacityLevel(1, 0.5) 41.34
CapacityLevel(1, 0.3) 41.08
CapacityLevel(1, 0.1) 40.88
OrderQuality(6) 53.83
OrderQuality(3.5) 40.88

Table 6.22: Heuristics results for the due-time problem

The best of these heuristic policies is OrderQuality(6).

RL-agent

Table 6.23 shows results of some RL-agents trained for this case. RL-agents are
trained sequentially according to the (θ, μ, ν)-methodology described in Section
5.3.1. The table only shows the results of the best RL-agents for some values
of θ. The NNθ700μ21ν18 RL-agent outperforms all the previous heuristics,
OrderQuality(6) in 10.2% and the Greedy in 76.4%.

scenario AR20000
NNθ500μ13ν13 36.25
NNθ600μ19ν18 37.18
NNθ700μ21ν18 59.31

Table 6.23: Results of RL-agents in the due-time problem
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Learning the RL-policy

Here we analyze the policy learned by the RL-agent NNθ700μ21ν18 using
19501 non-trivial iterations (where rejection was not a trivial decision). Using
the simple data mining technique we explained in Section 4.4.1 we obtain the
general preference relation for the zero level of the decision tree φ0 = ((1, 1)).
The matrix of selected/possible actions Aφ0 is shown in Table 6.24.

Selected Possible Actions
Actions (1,1) (0,0) (1,2) (2,1) (3,1) (2,2) (3,2) (4,1) (4,2)
(1,1) 2297 2297 2297 1998 2035 1998 2063 2260 2260
(0,0) 17 11773 3042 3902 3423 9274 4571 9044 11546
(1,2) 2 9 9 4 7 8 2 7 7
(2,1) 0 1205 0 1205 997 1205 1009 1187 1187
(3,1) 0 2321 1 356 2321 1660 2284 2295 2308
(2,2) 0 1019 0 34 784 1019 782 864 971
(3,2) 0 333 2 50 147 76 333 145 328
(4,1) 0 346 11 16 18 271 18 346 342
(4,2) 0 198 7 8 98 86 93 115 198

Table 6.24: Selected action against possible actions in 19501 iterations of the
NNθ700μ21ν18 RL-agent in the due-time problem

The policy obtained from the preference relation φ0 = ((1, 1)) makes 5450
errors, which makes 72.1% of quality, with respect to the policy learned by
the RL-agent. So φ0 defines a policy that only chooses orders of type 1, with
the due-time option 1 (the earliest), and it is not a good approximation of
the policy learned by the RL-agent. Such a policy resembles the heuristic
OrderQuality(6).

Table 6.25 summarizes a heuristic policy that better approximates the RL-
policy. The heuristic mainly considers branching according to the total amount
of loaded capacity TL1 and TL2 at each resource respectively, but it also con-
siders distribution of capacity according to the loading plan L and amount of
orders in the order list k in some cases. We use the following definitions:

Tk24 =
4X

i=2

ki,

k̄24 = (k2, k3, k4) ,

Ω = {(1, 2, 3) , (3, 2, 5) , (4, 2, ∗)} ,
Φ =

©
k̄24 |k4 = 4, k3 = 2, k2 6= 4

ª
,

Ψ =
©
k̄24 |(k4 ≥ 3, k3 = 2) ∨ (k3 = 1, k4 = 5)

ª
to describe some cases with a particular order-list. The symbol ∗ in the above



142 Chapter 6. OA involving additional decisions

definition means that there could be any value in the position of the symbol.
The columns in the table specify the number of the node, the description of the
node, the preference relation, the number of transitions covered by the node,
and the number of errors.
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N0 States
preference
relation

# of
cases

errors

1 All states (1,1) 2316 19
2 TL1=TL2=0 (3,1),(2,1) 846 327
3 TL1=0,TL2=8

TL1=8,L11=0,(L12= 8 ∨ Tk24 ≤ 4)
TL1=TL2=16,L11=0,(L12= 8 ∨ Tk24 ≤ 4)
TL1=32,TL2=24,L21=L22=L25=8,k̄/∈ Ω (2,1),(3,1) 665 12

4 TL1 = 8,L11=0,(L12= 8∨Tk24> 4)
TL1=TL2=16,L11=0,(L12= 8∨Tk24> 4) (2,1),(3,2) 494 0

5 TL1=16,TL2=24,L11=0
TL1=32,TL2=24,L21=L22=L25=8,k̄∈ Ω (2,1),(2,2) 58 0

6 TL1=24,TL2=8,L23=8;
TL1=32,TL2=16,L21=L22=8
TL1=40,TL2=32,L24=L26=0 (2,2),(3,1) 271 23

7 TL1=24,TL2=8,L24=8 (3,1),(4,1) 1463 21
8 TL1=24,TL2=8,L21=8;

TL1=40,TL2=24,L21=L23=L25=8,k̄∈ Φ (3,1) 38 0
9 TL1=24,TL2=16,

L23=L22=0
L23=L24=0
TL1=32,TL2=24,L21=L24=L25=8 (2,2),(3,1),(4,1) 1167 133

10 TL1=24,TL2=24,L22=0;
TL1=40,TL2=24,L21=L23=L25=8, k̄/∈ Φ (2,2) 55 0

11 TL1=24,TL2=24,L23=0 (4,1)(2,2) 155 18
12 TL1=32,TL2=16,L21 = 0, Tk24 ∈ Ψ;

TL1=40,TL2=32,L22=L25=0 (4,2) 86 0
13 TL1=32,L2=16,L21 = 0, Tk24 /∈ Ψ (3,2),(2,2) 19 0
14 TL1=32,TL2=24,L21=L23=L24=8 (2,2),(4,2) 45 0
15 TL1=40,TL2=24,

L21=L22=L25+L26=8
L21=L24=L26=8

TL1=40,TL2=32,
L23=L24=0
L22=L23=0,k4=5
L24=L25=0 (3,2) 61 0

16 TL1=40,TL2=32,L22=L23=0,k4 6= 5 (3,2),(4,2) 154 0
17 Otherwise Reject 11773 69

Table 6.25: Branching the RL-policy NNθ700μ21ν18 in the due-time problem. We
call this policy HeuNN700
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The table leads us to a heuristic policy (HeuNN700) represented by a hi-
erarchical set of decision rules which have 96.36% of quality, with respect to
the policy learned by the RL-agent. A complete branching according to the
possible values of the arrival list is very expensive computationally, since the
number of combinations could be up to 216∗212 = 884 736 (216 types of arrivals
and 6 stages per each of the 2 resources, each taking values 0 and 8).

The average results on 5 samples of the HeuRL and the RL-agent are shown
in Table 6.26.

scenario AR20000
NNθ700μ21ν18 59.44671239
HeuRL 59.58850616

Table 6.26: Average results on 5 samples of the RL-agent NNθ700μ21ν18 and a
heuristic elaborated on the RL-learned policy in the due-time problem

A one way-Anova test did not show significant difference between the per-
formances of these policies. See Table 6.27.

Source SS df MS F p
Column 0.050263686 1 0.050263686 2.261824902 0.171007814
Error 0.177780997 8 0.022222625
Total 0.228044683 9

Table 6.27: Results of a one-way ANOVA test for the NNθ700μ21ν18 RL-agent
and a heuristic elaborated on the RL-learned policy in the due-time problem

From the analysis on the policy learned by the RL-agent, we can draw some
conclusions:

1. There is a prioritization of choosing order type 1 with the earliest due-time
option (option 1). This is the action with highest reward per capacity
request. However the latest due-time does not seem to be a good choice
for this order type, even though it is the second more profitable action.

2. There is opportunity to choose order type 1 with option 1 only when
C1 ≤ 16 ∧ L2 ≤ 24.

3. In case L1 ≤ 16 ∧ L2 ≤ 24 and it is not possible to choose order type 1
with option 1, there is a certain strategy to occupy capacity (in order not
to lose it) in a way not to limit a possible acceptance of order type 1 in
the near future. This is achieved with a specific selection of orders type
2 and 3, only when L11 = 0.

4. In case L1 > 16∨L2 > 24, the taken actions guarantee the use of the free
capacity that could be lost in resource 2.
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5. The second option of due-time is preferred when there is a high utilization
of capacity such that there is more flexibility to reschedule the accepted
orders.

The learned policy seems to allocate capacity in a more look-ahead-like way,
being concerned not only with the immediate next step but also taking into
account more steps ahead, and the frequency of arrivals of each order type. We
believe that this is the explanation of the way orders of type 2, 3, and 4 are
chosen. It is not possible to determine this policy using only the information of
the capacity profile and the order list. Thus we can conclude that the RL-agent
was able to extract implicit information of the problem in order to obtain a
reasonably good policy for the Order Acceptance and due-time decisions.

6.5 Conclusions

In this chapter, we have shown that RL can be a good option to find efficient
decision policies in complex situations, where the acceptance decision is com-
bined with other decisions like routing, outsourcing or due-time negotiation.
In all cases RL-agents improve simple heuristics.

In the OA+routing case the RL-agent outperforms the Greedy with 131.3%
and with 14.9% the best general heuristic agent that we could define a priori
with complete information. With the simple data mining technique explained
in Section 4.4.1, we could define heuristic rules with 99.7% quality.

In the OA+outsourcing case the RL-agent outperforms the Greedy with
122.95% and with 32.77% the best general heuristic agent that we could define
a priori with complete information. With the simple data mining technique we
could define heuristic rules with 96.88% quality.

In the OA+due-time case the RL-agent outperforms the Greedy with 76.4%
and with 10.2% the best general heuristic agent that we could define a priori
with complete information. With the simple data mining technique we could
define heuristic rules with 96.4% quality.

The interpretation of the learned policies shows that better heuristics for
these cases may be policies that prioritize other orders than the order with
higher reward per unit of capacity request. The learned policies seem to allocate
capacity in a more look-ahead-like way, being concerned not only with the
immediate next step but also taking into account some more steps ahead, and
the frequency of arrivals of each order type. It is not possible to define this
kind of policies using only the information on the capacity profile and the order
list. Thus we can conclude that RL-agents are able to extract the implicit
information of the problems in order to obtain reasonably good policies for the
Order Acceptance and other decisions.
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Chapter 7

Conclusions and further
research

This chapter summarizes the results from the thesis taking into account the
research questions introduced in Chapter 1. Furthermore we indicate directions
for further research.

The general motivation of the research laid down in this thesis is to exploit
to what extent intelligent computational techniques can be used to solve opti-
mization problems with implicit information. Since OA is an essential business
problem that has not been extensively studied in this respect, we decided to
focus on OA under uncertainty taking into account opportunity costs. This
leads us to the first research question:

1. How can we model OA under uncertainty taking into account opportunity
costs?

The use of RL methods is motivated by the fact that Reinforcement Learn-
ing is a promising approach that combines the ideas of modeling uncertainty
and solving the problem of incomplete information. The idea of learning with-
out the necessity of complete model information and the possibility of learning
even from delayed rewards allows us to consider different degrees of uncertainty
and to take into account the opportunity cost problem in a natural way. Since
RL is still in his childhood, successful applications are not always fully un-
derstood at a theoretical level. Especially the problem of tuning the training
parameters for the RL-agents has not been addressed in the literature in a gen-
eral theoretical setting. The latter is both a challenge and a threat. Therefore
it can be considered as one of the true concerns of this thesis. This leads us to
our second and third research questions:
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2. How to tune the parameters for RL?

3. How does RL perform compared to other heuristics for OA?

Another concern is the question how to open the black box formed by the
agent’s brain, i.e., how to interpret the results found during the learning process
and how to translate them into useful heuristic rules for the original OA prob-
lem.

4. How can we interpret the knowledge learned by using the RL approach
in OA under uncertainty?

In Section 7.1 we give a summary of the contributions of this thesis and
outline the answers to our research questions. We conclude this thesis in Section
7.2 with suggestions for further research.

7.1 Contributions

The main contributions of this thesis are:

• new semi-Markov decision models for OA

• a methodology for tuning the RL training parameters

• a general class of heuristics for OA

• a general framework for generating new heuristic rules for OA problems
under uncertainty.

All these contributions seen as a whole, define a general RL-metaheuristic
for the application of RL to OA. We believe this is a general approach that may
also be applied to other logistic problems. In conclusion, we may say that RL
is a good option to obtain advanced heuristic policies especially in problems
with a large state space, and when the decision making has to be done under
uncertainty.

Next we describe the main contributions in more detail and outline the
answers to our research questions.

7.1.1 Modeling Order Acceptance under uncertainty

The first research question is about modeling OA under uncertainty taking
into account opportunity costs. In this thesis, we present six new semi-Markov
decision models for OA problems under uncertainty with different levels of
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complexity (Chapters 3-6). We consider in all models a finite number of types of
orders. Types of orders are characterized by their immediate reward, due-time
(except for Model 1), arrival rate and processing time. Capacity is modelled in
different ways: as a single server that can handle only one job at a time, as a
single resource consisting of multiple identical servers, and as multiple different
resources. In the first three models the goal of the decision maker is to maximize
the expected value of the total discounted reward by accepting orders without
violating possible due-times. In the last three models besides the OA decision
other decisions are considered: routing, outsourcing and due-time negotiation.

From an SMDP point of view, uncertainty in one or more of the consid-
ered OA problems is given by the following stochastic processes: arrivals of
orders, processing times, capacity perturbation and negotiation of due-time.
Optimizing long term criteria in each semi-Markov decision problem allows us
to consider the opportunity costs problem in a natural way. Although not fully
exploited in this thesis, the RL approach to solve these models allows us to
consider incomplete information as a different source of uncertainty, namely
not knowing the parameters of the stochastic processes mentioned above. The
RL approach also allows us to consider simulation models instead of explicit
models. This is very useful for complex problems where it may be difficult to
obtain the transition probabilities.

This modeling approach is very flexible and may be easily extended to other
OA situations. The RL-OA approach does take into account opportunity costs
and uncertainty. Hence we have addressed our first research question about
modeling OA under uncertainty taking into account opportunity costs.

For the simulation models we use two different types of software.

1. Matlab (11.1, MathWorks 2000) for the possibility of using the ANN
toolbox. We use it for the first two models which are quite simple.

2. eM-Plant (Tecnomatix, 2002). This is a more sophisticated simulation
software which allows us to incorporate our OA models into an integrated
planning approach previously developed by other researchers (Ebben et al.,
2005).

7.1.2 Tuning the training parameters

In order to address our second research question we present in Chapter 5 a
methodology for the automatic tuning of the training parameters for the RL-
agents we use in this thesis. Tuning parameters when stochasticity is involved
is generally more an art than a science. In this thesis we use a specific struc-
ture for the RL-agents which leads to a learning schedule with six parameters
(T,α0, 0, Tα, T , θ), see Section 2.3.2. This schedule defines the number of
iterations of the training process (T ), the initial value of the learning and ex-
ploration rate (α0, 0), the parameters for the learning and exploration rates
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decreasing functions (Tα, T ), and the number of hidden neurons (θ). From the
numerical experiments with the different problems discussed in Chapters 3 and
4, we observed some regularities that help us to set guidelines for the tuning of
these parameters. In Chapter 5 we present a methodology that reduces the set
of six parameters to a ( θ, μ, ν)-learning schedule with three parameters using
α0 = 10

−3, 0 = 1, T = μ104, Tα = μ103, T = ν103 and ν ∈ [1, ..., μ]. We use
this learning schedule in Chapters 5 and 6 aiming to improve the best known
heuristic. In the deterministic case in Chapter 5 we could only approximate the
best known heuristic. We believe the heuristic at hand in this case gives already
a good policy. Obtaining an RL-agent that improves such a heuristic would
have been computationally very expensive. Still the RL-agent trained using the
methodology for tuning parameters, allowed us to obtain an advanced heuris-
tic which outperformed the best known heuristic so far. In the three cases in
Chapter 6 we obtain RL-agents using the methodology for tuning parameters
that outperform the best known heuristic.

7.1.3 The Reinforcement Learning approach outperforms
simple heuristics for OA

To answer the third research question we need to consider heuristic methods
to be compared with our RL approach. In Chapter 4 we present a gen-
eral class of heuristics for OA. This class of heuristics may be viewed as a
characterization of the SMDP policies by means of a set of linear orderings
on the action space combined with a prescription of the allowed actions for
each state. Using this characterization we describe a one-parameter family
of heuristics (OrderQuality (b)) and a multi-parameter family of heuristics
(CapacityLevel (ρ)). We use these heuristics to compare the quality of the
policies learned by the RL-agents.

According to the OrderQuality(b) heuristic only orders with a reward per
processing time above a threshold b may be accepted. This threshold is related
to the avoidance of opportunity losses. This family of heuristics includes the
Directed Costing rules and Absorption Costing rules from the literature.

CapacityLevel(ρ) heuristics consider a capacity level threshold (ρi) for each
type of order i. This family of heuristics includes the policies that reserve
capacity for the most valuable orders. Note that, in case of penalization for
excess capacity, it might be better to fill capacity only up to a certain level of
utilization. So there is a safety margin for dealing with perturbations due to
non-anticipated extra capacity demand during job execution.

In this thesis we present the analysis of 13 cases. In the first three cases,
where the state space is quite small, the results of the RL-agents are compared
with optimal policies. In all the three cases RL-agents outperform the greedy
policies and approximate the results of the optimal policies. For the other
cases we use parametric subclasses of the general class of heuristics to compare



7.2. Further research 151

with. In one case a trained RL-agent approximated the best known heuristic
(0.66% of relative error in the average reward). In nine cases, trained RL-agents
outperformed the best known heuristic. In all these ten cases, the final results
of the RL-metaheuristic outperform the results of the parametric heuristics.

Hence we have answered our third research question. The RL-approach is
able to extract implicit information from OA problems under uncertainty in
order to find good decision policies that outperform simple heuristics rules.

7.1.4 Generating new heuristic rules for OA under un-
certainty.

An essential contribution of Chapter 4 is the development of a framework for
interpreting the learned RL policies and to elaborate new advanced heuristic
policies. Though developed in a specific context of the OA problem at hand,
the framework is very general. In fact, it applies to any decision problem under
uncertainty. The framework is built up out of three steps. In the first step we
train the RL-agent and after having done so perform a large series of iterations
with it. In the second step we employ a simple data mining technique to
extract explicit knowledge about action preferences from the performed series
of iterations. In the third step we identify heuristic rules from this action
preference knowledge. The method laid down in our framework is powerful
and universal. We use it throughout the Chapters 4, 5 and 6.

Using this framework we were able to find advanced heuristics for OA under
uncertainty and interpret the learned RL-policies. Herewith we have answered
our fourth research question.

7.2 Further research

7.2.1 Problem dimensions

We have modelled six OA problems. We have gone from the simplest model
with a single resource and simple arrivals to integrated planning models with
multiresources capacity and batch arrivals. However, other OA problems may
be studied using the approach presented in this thesis.

As an interesting possibility we mention the case that rejected orders are
not immediately lost, but can be put in "inventory" for a certain amount of
time. In this way they may be accepted at a later moment in time than their
arrival. This might happen if at a future decision moment new arrivals of
more interesting orders than those in inventory do not occur. Actually this is
a simple variant of the OA problems that we studied in the thesis. Orders in
inventory can simply be considered as "arrivals from inventory".
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All the cases in the job-shop environment only considered two different
resources. These cases were complex enough to illustrate the applicability of
our approach, however in future -with faster implementations- larger and more
realistic cases could be considered.

As a last generalization we mention, that the rejection of an order may
have repercussions for the future customer relations, which would required a
different modelling approach.

7.2.2 Solution dimensions

In this thesis we have applied some classical RL algorithms. However, RL is an
area of much recent research which offers important theoretical and practical
challenges. At the conclusion of this thesis, the number of applications and
theoretical studies of RL has grown. There are several directions that will be
worthwhile to take into account for extending the research line set out in this
thesis. In general we propose:

1. Different knowledge representation and training when using function ap-
proximation.

2. Incorporating prior information into the learning mechanism.

3. Parallel implementation of the parameter tuning process.

4. Improving data mining algorithms to interpret the learned RL policies.

5. Multi-agent systems for the loading procedures to support OA.

6. Average reward instead of expected discounted reward algorithms.

Leaving the field of order acceptance it would be worthwile to investigate
to what extent the RL-metaheuristic developed in this study may be helpful
to generate advanced heuristic rules for other intricate logistic problems with
their own specific uncertainties.
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Appendix A

Glossary of symbols

A.1 Order characteristics

n number of different type of orders
pi processing time of order of type i
qi probability of arrival of order of type i
λi frequency of arrival of order of type i
ti due-time of order of type i
ri reward for acceptance of order of type i
wi expected processing time of order of type i
k order-list
ki number of orders of type i requesting service
mi maximum amount of orders of type i in the order list
σi routing of order of type i
Rij resource of job j in order of type i
βij expected processing time of job j in order of type i
Bij processing time distribution for job j in order of type i
wij processing time of job j in order of type i
JL job list of accepted orders

A.2 Capacity profile characteristics

c capacity profile
H number of stages in the planning horizon of the capacity profile
Cmax maximum capacity per stage of the capacity profile
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ct occupied capacity at stage t of the planning horizon
L loading profile
TLi Total loaded capacity in resource i
p perturbation term
pen(c, p) penalty for using non-regular capacity
η penalty per unit of non-regular capacity

A.3 SMDP characteristics

S state space
A action space
A(s) set of possible actions for state s
rew(s, a, s0) immediate reward when in state s action a is taken

leading to the next state s0

R(s, a) expected immediate reward when in state s action a is taken
d(s, a, s0) time between decision moments when in state s

action a is taken leading to the next state s0

Pr(s, a, s0) transition probability when in state s action a is taken
leading to the next state s0

π policy
V (s) state-value function
Q(s, a) action-value function
γ discount factor

A.4 RL-agent characteristics

ANN Artificial Neural Network
θ number of hidden neurons in the ANN
I inputs in the ANN
w set of weights in the ANN
W matrix of weights from the input to the hidden layer in the ANN
b vector of biases in the hidden layer
Wo vector of weights from the hidden layer to the output neuron
bo bias in the output neuron
wt vector of weights at iteration t
Qt(s, a, wt) estimated action-value function at iteration t
λ eligibility trace

continued on next page
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continued from previous page

T number of iterations of the learning process
αt learning rate at iteration t
εt exploration rate at iteration t
Tα parameter defining decreasing speed of learning rate
Tε parameter defining decreasing speed of exploration rate
NNθAμBνC RL-agent trained using the (θ, μ, ν)-learning schedule for

(θ, μ, ν) = (A,B,C)
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Appendix B

About experimental results

B.1 More experiments to support the learning
schedule

In Section 2.3.2 we defined a general learning schedule with six parameters.
This schedule defines the number of iterations of the training process (T ), the
initial value of the learning and exploration rates (α0, ε0), and the parameters
for the learning and exploration rates decreasing functions (Tα, T ) and the
number of hidden neurons (θ). Here we present some extra experimental results
to support the new learning schedule with three parameters and the tuning
procedure presented in Chapter 5.

B.1.1 Case 3 from Chapter 4

Here we show how we obtained the parameters for the experiments presented in
4.5.3. First we study the influence of the number of iterations in the training
process (T ) and the number of hidden neurons (θ) while keeping the other
parameters constant. Taking into account that 104 is a small value compare to
the size of the state space we start with T = 104 and increase this value. For
the hidden neurons we just tried using 10, 20, 30, etc.

We consider α0 = ε0 = 1 and the idea that the final value of the learning
and exploration parameters should be less than 10% of their initial values.
Hence Tα = T = 103. Table B.1 shows the values of the performance measure
AR20000. The results were very poor.

Next the idea was to make Tα = T = T
10 in order keep some level of explo-
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θ
T 10 20 30 40 50

1x104 0 0.412 3.119 3.120 3.121
2x104 0 0.296 3.128 3.126 3.128
3x104 0 0.502 3.127 3.129 3.129

Table B.1: Bad performance of RL-agents for α0 = 0 = 1, Tα = T = 103

ration and learning when increasing the number T of iterations. Furthermore
we focus on using θ = 50, see Table B.2. The results were similar, still bad
results.

θ
T 30 40 50

1×104 3.119 3.120 3.121
2×104 3.128 3.129 3.130
3×104 3.123 3.123 3.123

Table B.2: Bad performance of RL-agents for α0 = 0 = 1, Tα = T = T
10

Next we explore different initial values for the learning rate α0. Furthermore
we focus on using θ = 50, since the results in Table B.2 does not show significant
differences for the different values of θ. See Table B.3.

α0 = 0.1 α0 = 0.01 α0 = 0.001
T = 104, Tα = T = 103 4.753 4.875 3.379

T = 2× 104, Tα = T = 103 4.033 4.977 3.075
T = 3× 104, Tα = T = 103 4.234 4.816 3.050

T = 2× 104, Tα = T = 2× 103 3.010 4.435 3.278
T = 3× 104, Tα = T = 3× 103 2.509 5.037 4.627

Table B.3: Improvement in performance of RL-agents for smaller values of α0.
0 = 1, θ = 50

Using a smaller initial learning rate diminishes the rank of the learning
values during learning, so learning occurs slower. The last two columns show a
significant improvement on performance when increasing the number of training
iterations. The best results for these two values of α, are in the case T =
3x104, Tα = T = 3x103 so we decided to explore more values for T and θ
keeping the relation Tα = T = T

10 . To generate the values T and θ we use an
enumerative recursive procedure with two levels, type of push, pop and stack
(Hofstadter, 1999). A step in the higher level corresponds to a new value of
θ, to push means to keep that value of θ while going to the lowest level where
the values of T are increased in 104. The values of T are increased while the
performance AR20000 is improved. If AR20000 does not improve with a new
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value of T we close operations at that level and resume operations where we
left off on the highest level, this constitutes to pop. The value of θ is increased
to 50. The stack is to keep record of where we were in each level, see Tables
B.4 and B.5.

θ T
104 AR20000 θ T

104 AR2000
50 3 5.037 250 7 5.106

4 4.953 8 5.039
100 4 4.897 300 8 4.882

5 4.539 9 4.941
150 5 5.115 10 5.071

6 5.081 11 5.125
200 6 5.042 12 4.956

7 4.860

Table B.4: push, pop and stack for two levels of θ and T. α0 = 0.01, 0 = 1, Tα =
T = T

10

θ T
104 AR20000 θ T

104 AR20000
50 3 4.627 150 11 5.097

4 4.404 200 11 5.119
100 4 4.699 12 5.161

5 4.881 13 5.124
6 5.039 250 13 5.104
7 5.103 14 5.152
8 5.039 15 5.107

150 8 5.029 300 15 5.063
9 5.090 16 5.174
10 5.107 17 5.323

Table B.5: push, pop and stack for two levels of θ and T. α0 = 0.001, 0 = 1, Tα =
T = T

10

In the case α0 = 0.001 although the learning is slower the final result with
θ = 300 is better than in the case α0 = 0.01. With all the cases in Chapter 4
the results were similar.

B.1.2 Routing case from Chapter 6

Here we show how we obtained the parameters for the experiments presented
in 6.4.2. In the previous experiments using Tα = T was sufficient to achieve
good results. Some more experiments show that decreasing the initial value of
exploration rate does not help to improve performance but instead one must use
a faster decrease of the exploration, e.g., use Tα = T

10 and 10
3 ≤ T ≤ T

10 .Table
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B.6 shows a push, pop and stack procedure with three levels for the parameters
θ, T, and T .

θ T
104

T
103 AR20000 θ T

104
T
103 AR20000

300 11 11 32.020 400 14 12 73.939
12 11 32,020 13 32.029

12 34.027 14 32.038
13 12 32.038 15 12 63.532

13 32.056 13 32,057
350 13 12 33,953 14 32.220

13 32.023 15 32.033
14 12 32.175 450 15 12 73.324

13 32.531 13 32.023
14 32.281 14 74.107

15 73.963

Table B.6: push, pop and stack for three levels of θ, T and 103 ≤ T ≤ T
10 . α0 =

0.001, 0 = 1, Tα =
T
10

These results show the sensitivity of the performance to the exploration rate.
All the experiments in Chapters 5 and 6 use this scheme with three parameters
corresponding to (θ, T

104 ,
T
103 )

B.2 Some thoughts on scalability issues

It is an intuitive idea that the more complex the OA problem, the more difficult
the learning. We have the believe that it is in the complex problems where we
can really appreciate the benefits of using the RL approach. However measuring
complexity of the models is not a trivial issue. As an initial attempt we consider
the size of the state and action space |S ×A| as an indicator of the complexity
of an SMDP. Consequently, we use the size of the observation and action space
for the POMDP, in the sequel this indicator appears as |S ×A| as well. Then we
present the relation between this indicator and the results of our experiments.
Let us first introduce some notation.

NNP: number of parameters of the ANN used in the first RL-agent that
outperforms the best known heuristic.

%INC.AR: Percentage of the increase of the performance in the best RL-
agent found with respect to the best known heuristic.

Rank HN: The rank of the number of hidden neurons used for the first and
last RL-agents that outperform the best known heuristic

Rank It.: The rank of the number of iterations for the first and last RL-
agents to outperform the best known heuristic.
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We want to emphasize that the best RL-agent is usually the last RL-agent
we obtained for each case, this could indicate that further improvement can
be achieved by continuing training other RL-agents. For the purpose of this
research we only aim to outperform the best known heuristics. Only in some
small cases we extend the training of other RL-agents. Table B.7 shows the
results.

Case |S ×A| NNP
|S×A|

%Inc
AR

Rank HN Rank It.

example in
Chapter 1

4.09×1011 1.625×10−8 6.4 350-350 6×104−1.1×105

1-Chapter 4 3.54×105 3.67×10−3 2.12 100-300 3×104 − 105
2-Chapter 4 3.54×105 3.67×10−3 3.67 100-250 4×104−1.2×105
3-Chapter 4 2.41×106 2.7×10−4 21.07 50-300 3×104−1.6×105
4-Chapter 4 2.41×106 2.7×10−4 28.35 50-300 2×104−1.6×105
1-Chapter 5 7.97×107 9.6×10−5 -0.66 450 2.2×105
2-Chapter 5 8.47×1012 1.11×10−8 0.27 550 2×105
1-Chapter 6 3.96×105 2.28×10−2 14.9 400-450 1.2×105−1.4×105
2-Chapter 6 3.98×106 1.73×10−3 31.9 300-400 1.3×105−1.5×105
3-Chapter 6 7.96×106 2.97×10−3 10.2 700 1.8×105

Table B.7: Relation between the size of the OA models and the experimental results

The results show that in general the relation NNP
|S×A| improves (gets smaller)

when the size of the problem increase. This suggests that the number of pa-
rameters for the ANN representations does not need to grow proportional to
the size of the problem in order to outperform simple heuristics. We may say
that for complex problems where heuristics do not offer good solutions, the
RL-approach may be a good alternative that with no much effort can eas-
ily outperform the heuristics. %INC.AR also supports this. In the case that
the RL-agent can not outperform the heuristic it may be that the heuristic is
already a good policy for that problem.

With respect to the results from Rank HN and Rank It it seems that starting
with 50 hidden neurons and 104 iterations is a good idea because for the smaller
cases it helps to outperform the heuristic almost since the first agent. When
using larger numbers of hidden neurons the learning becomes slower, as it seems
the RL-agent is in a process to polish its policy.
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Summary

In this thesis, we study Order Acceptance (OA) problems under uncertainty
and their solutions using Reinforcement Learning (RL). OA is an essential busi-
ness problem that has not been extensively studied in this respect. Orders with
different characteristics arrive stochastically at a processing facility; based on
expected total profit a decision has to be made whether or not to accept an in-
coming order. Unaccepted orders are lost forever. RL is a promising approach
that combines the ideas of modeling uncertainty and solving the problem of
incomplete information (using learning methods). The idea of modeling uncer-
tainty is based on modeling semi-Markov decision problems (SMDP). Our first
concern is to model OA problems under uncertainty in such a way that RL can
be applied. Although RL has successful applications in various areas, these
applications are not always fully understood at a theoretical level. Especially
the problem of tuning the training parameters for the RL-agents has not been
addressed in the literature in a general theoretical setting. The latter is both
a challenge and a threat. Therefore it can be considered as one of the true
concerns of this thesis. Another concern is the question how to open the black
box formed by the agent’s brain, i.e., how to interpret the results found during
the learning process and how to translate them into useful heuristic rules for
the original OA problem.

In Chapter 1 we outline relevant OA issues. We define our research ques-
tions, review the relevant literature and present an example to illustrate our line
of research. Chapter 2 summarizes the basic background for RL and specifies
our approach for using RL in OA.

In Chapter 3 we start with a simple OA problem and define our first OA
model. In Model 1 we consider systems with a single server without a queuing
facility, and a finite number of types of orders with single stochastic arrivals
and deterministic processing times. The model of this problem as an SMDP
is very simple. Methods from SMDP theory can easily cope with this problem
when the complete model is known, yielding us the optimality equations and
the threshold structure for an optimal policy. So we can use an optimal solution
to compare it with the results from the RL-algorithms. This allows us to use
this model as prototype to understand the techniques of the different methods
of RL including the use of function approximation.

In Chapter 4 (Model 2) we consider systems with a shared unique resource,
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which may consist of several parallel-servers. Arrivals of orders take place
continuously, however, arrivals are only evaluated at discrete equidistant time
moments, so we generally consider several arrivals at each decision moment
(batch arrivals). The probability of arrival is order type dependent. Accepted
orders are to be loaded over a planning horizon consisting of a fixed number of
stages. Each stage spans the time between two consecutive decision moments.
Each order may be split arbitrarily over different stages (preemption) as long as
its due-time is not violated. Per stage a maximum regular capacity is available
at the resource to process the orders. Of every incoming order the required
capacity is known. However, with a certain probability perturbations in the
required capacity may occur. It is possible to use non-regular capacity at a
certain cost, in order to avoid possible violations of due-times for the accepted
orders that may be caused by perturbations in the required capacity.

In order to reduce the number of possible decisions we impose some restric-
tions on the structure of the decision rule. Instead of focusing on all possible
subsets of orders at once, as possible decisions, we impose that the decision
is created sequentially, while we call a time off. Each single decision in the
sequence is either the selection of one of the orders from the arrival list or the
rejection of all of them. For the capacity planning we use fixed prescription
rules: Backward Loading and Least Shift Back.

In Chapter 4 we also present a characterization of the SMDP policies by
means of a general class of heuristics. Two subclasses of this class of heuristics
play an important role in this thesis: the one-parameter family of heuristics
OrderQuality and the multi-parameter family of heuristics CapacityLevel. Ac-
cording to the OrderQuality heuristics only orders with a reward per unit of
processing time above a threshold may be accepted. This threshold is related to
the avoidance of opportunity losses. CapacityLevel heuristics employ a capacity
level threshold for each type of order. This threshold stands for the maximally
admissible fraction of the total capacity in the planning horizon used by all the
accepted orders after accepting an order of the type under consideration. This
family of heuristics includes the policies that reserve capacities for the most
valuable orders. Motivation for these heuristics is the consideration that, in
case of penalization for excess capacity, it might be better to fill capacity only
up to a certain level of utilization. Thus there is a safety margin for dealing
with perturbations due to non-anticipated extra capacity demand during job
execution. We use results of both families of heuristics to compare them with
the results from the policies learned by the RL-agents.

An essential contribution of Chapter 4 is the development of a framework for
interpreting the learned RL-policies and to elaborate new advanced heuristic
policies. Though developed in the specific context of the OA problem at hand,
the framework is very general. In fact, it applies to any decision problem under
uncertainty. The framework is built up out of three steps. In the first step we
train the RL-agent and after having done so perform a large series of iterations
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with it. In the second step we employ a simple data mining technique to
extract explicit knowledge about action preferences from the performed series
of iterations. In the third step we identify heuristic rules from this action
preference knowledge. The method laid down in our framework is powerful
and universal. We use it throughout the Chapters 4, 5 and 6.

In Chapter 5 (Model 3) we consider an extension of Model 2 from Chapter
4. Here the server system is a multiresource job-shop where the arriving orders
are built up out of a number of jobs with fixed routes along the resources. The
processing times of the jobs are stochastic. The system state at an arbitrary
decision moment consists on the one hand of the list of arrived orders, on the
other hand of the capacity profile, which in turn contains information about
the jobs being executed, but also about the accepted jobs that are waiting
for execution. A complex structure, since each of these accepted jobs should
have an indication of its possible starting time (or its predecessor job) in order
not to violate the precedence relations. To avoid blinding the RL-agent with
an overwhelming amount of system state information we provide the agent —
so to speak — with sunglasses: as RL-input we use features, simplifications of
the state representation. Of course, the actions rendered by the agent to the
environment in each iteration are affecting the real system states. As feature
for the list of arrived orders we give to the RL-agent only the order types that
fit within the available capacity on the basis of a tentative EDD loading plan.
As feature for the capacity profile we give to the RL-agent the loading plan
that emerges by adding - according to EDD - the jobs that are waiting for
execution to the jobs that are being executed. As in Chapter 4 we use a time
off. We evaluate an incoming order on the basis of a tentative EDD loading
plan in which we reschedule the new and the waiting jobs, leaving in peace the
jobs that are being executed.

Also in Chapter 5 we present a methodology for the automatic tuning of
the training parameters for the RL-agents. This methodology is based on
experimental results and reduction of the number of free parameters.

In Chapter 6 (Models 4, 5 and 6) we consider OA problems with an under-
lying decision problem. To simplify the discussion we assume that the orders
are subdivided into at most two jobs. In Model 4 we consider routing decisions
in an open job-shop. The problem in this case is similar to the multiresource
problem. However, the description of the orders does not include a fixed rout-
ing and a decision has two parts: as before one is which orders to accept, and
the other part is for each of the accepted orders which routing should be used.

In Model 5 we return to the multiresource job-shop of Model 3. However,
we add the possibility of deciding to outsource part of an incoming order. For
simplicity reasons we only consider the situation that the second job of an order
may be outsourced, so there are two outsourcing options. Not outsourcing
an order means that both jobs of the order will be processed in the shop.
Outsourcing an order means that the first job of the order will be processed in
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the shop and the other one will be outsourced. Furthermore there could be a
limit in the total amount to outsource in each time period.

In Model 6 we consider - in the multiresource job-shop of Model 3 - some
freedom in the selection of a due-time for an accepted order. Associated to
each due-time option there is a reward for acceptance. Furthermore there is a
certain probability that the customer will agree on the selection of that option.
For simplicity reasons we consider orders with two due-time options. A decision
has two parts, as before one is which orders to accept, and the other part is
for each of the accepted orders which due-time to agree on. A substantial
difference with the other problem settings is that the customer could decide to
quit the system.

Summarizing, the main contributions of this thesis are: new semi-Markov
decision models for OA under uncertainty, a general class of heuristics for OA, a
methodology for tuning the RL training parameters and a general framework for
generating new heuristic rules for decision problems under uncertainty by using
RL. All these contributions seen as a whole, define a general RL-metaheuristic
for the application of RL to OA. We believe this general approach is applicable
to a multitude of logistic decision problems.

In this thesis we present the analysis of 13 cases. In the first three cases,
where the state space is quite small, the results of the RL-agents are compared
with optimal policies. In all the three cases RL-agents outperform the greedy
policies and approximate the results of optimal policies. For the other cases
we use parametric subclasses of a general class of heuristics to compare with.
In all these 10 cases, the final results of the RL-metaheuristic outperform the
results of the parametric heuristics.

In conclusion, we may say that our RL-metaheuristic is a valuable option for
obtaining advanced heuristic policies especially for problems with a large state
space, and such that the decision making has to be done under uncertainty.
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Samenvatting

Centraal in dit proefschrift staat de aanpak van problemen rondom orderaccep-
tatie (OA) onder onzekerheid door middel van Reinforcement Learning (RL).
OA is een fundamenteel bedrijfskundig vraagstuk dat - voor zover bekend -
nog niet eerder in deze context is bestudeerd. Orders met uiteenlopende karak-
teristieken komen stochastisch aan bij een bewerkingsstation; op grond van
de verwachte totale opbrengst dient men te beslissen of een binnenkomende
order al dan niet wordt geaccepteerd. Niet geaccepteerde orders gaan ver-
loren. RL is een probleemaanpak die bij uitstek geschikt is om onzekerheid te
modelleren en bovendien in staat is om via leermethoden om te gaan met on-
volledige informatie. Bij het modelleren van onzekerheid bouwen we voort op
de theorie van de semi-Markov beslissingsproblemen (SMDP). Belangrijk hier-
bij is om OA-problemen onder onzekerheid zodanig te modelleren dat RL kan
worden toegepast. RL kent op uiteenlopende gebieden een aantal succesvolle
toepassingen, die niet altijd voldoende theoretisch zijn onderbouwd. Met name
het probleem van het kalibreren van de trainingsparameters voor RL-agenten is
in de literatuur niet in een algemeen theoretisch kader geanalyseerd. Dat laat-
ste vormt zowel een uitdaging als een bedreiging. Het kan worden opgevat als
een belangrijk punt van zorg voor deze studie. Een niet minder belangrijk aan-
dachtspunt is de vraag hoe toegang te krijgen tot de black box gevormd door
het brein van de RL-agent. Hoe dienen we de resultaten die in de loop van het
leerproces zijn verkregen te interpreteren? Hoe vertalen we die resultaten in
nuttige heuristieken voor het oorspronkelijke OA-probleem?

In Hoofdstuk 1 kenschetsen we de OA-problematiek. We definiëren onze on-
derzoeksvragen en geven een overzicht van relevante literatuur. Verder geven
we een voorbeeld dat illustratief is voor de te volgen onderzoekslijn. Hoofd-
stuk 2 resumeert de basisprincipes van RL en specificeert onze aanpak van
RL voor OA. In Hoofdstuk 3 beginnen we met een eenvoudig OA-probleem
en definiëren ons eerste OA-model. In Model 1 beschouwen we systemen met
één bedieningsstation zonder wachtruimte en een eindig aantal ordertypes met
deterministische bewerkingstijden. Orders komen individueel en stochastisch
binnen. Het bijbehorende SMDP laat zich eenvoudig oplossen mits de pro-
bleemdata expliciet bekend zijn. Als optimale oplossing vinden we een policy
met een drempelwaarde-structuur. Interessant is nu, dat we de gevonden opti-
male oplossing kunnen vergelijken met resultaten verkregen via RL-algoritmes.
Aldus dient dit model als prototype om inzicht te verkrijgen in verschillende
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RL-technieken, zoals het gebruik van functie-approximaties.

In Hoofdstuk 4 (Model 2) beschouwen we systemen met één resource. Or-
ders komen continu binnen, maar worden slechts geëvalueerd op discrete tijd-
stippen met vaste tussenpozen. Per beslissingstijdstip dienen we doorgaans
meerdere orderaankomsten te beschouwen (batch arrivals). De aankomstkansen
zijn orderafhankelijk. Geaccepteerde orders dienen te worden ingepland over
een planningshorizon ter grootte van een vast aantal fases, waarin een fase
de tijdspanne is tussen twee opeenvolgende beslissingsmomenten. Orders mo-
gen willekeurig worden opgesplitst over verschillende fases (pre-emptie) mits de
order-due-time niet overschreden wordt. Per fase is er bij de resource een vaste
hoeveelheid reguliere capaciteit beschikbaar om aan de orders te werken. Van
iedere binnenkomende order is de vereiste capaciteit bekend; we bouwen echter
een waarschijnlijkheid in van fluctuaties in de benodigde capaciteit. De mo-
gelijkheid bestaat om tegen zekere kosten niet-reguliere capaciteit in te huren
teneinde voor de reeds geaccepteerde orders overschrijding van due-times te
voorkomen, indien er onverhoopt meer capaciteit nodig is dan aanvankelijk be-
groot. Om het aantal mogelijke beslissingen terug te brengen modificeren we
het beslissingsproces. In plaats van - op ieder beslissingsmoment - alle mo-
gelijke deelverzamelingen van binnengekomen orders te beschouwen, gaan we
als volgt te werk. We zetten de tijd even stil (time off) en evalueren vervolgens
één voor één de binnengekomen orders. Iedere beslissing tijdens de time off is
ofwel de selectie van één van de orders van de aankomstlijst ofwel de verwerping
van alle binnengekomen orders. Een verdere vereenvoudiging is dat we voor
het inplannen van de orders gebruik maken van twee simpele, maar plausibele
capaciteitsplanningsregels: Backward Loading en Least Shift Back.

Eveneens in Hoofdstuk 4 presenteren we een karakterisering van de SMDP-
policies door middel van een algemene klasse heuristieken. Twee subklassen
van deze klasse heuristieken spelen in dit proefschrift een belangrijke rol: de
één-parameter familie heuristieken OrderQuality en de multi-parameter familie
heuristieken CapacityLevel. Volgens OrderQuality mogen alleen orders worden
geaccepteerd met een opbrengst per eenheid van bewerkingstijd die boven een
drempelwaarde ligt. De drempelwaarde wordt zo gekozen dat het verlies van
veelbelovende orders - doordat capaciteit wordt toegewezen aan onbeduidende
orders - zoveel mogelijk wordt vermeden. Bij de familie heuristieken Capac-
ityLevel wordt voor ieder ordertype een drempelwaarde gehanteerd voor de
maximaal toelaatbare fractie van de totale capaciteit in de planningshorizon
die na acceptatie van een order van het desbetreffende type door de geza-
menlijke geaccepteerde orders wordt gebruikt. Onder deze familie heuristieken
bevinden zich policies die capaciteit reserveren voor de meest waardevolle or-
ders. Met het oog op de extra kosten die capaciteitsoverschrijding met zich
meebrengt is het raadzaam om - via heuristieken als deze - de capaciteit van
de resource slechts tot een bepaald niveau te benutten. Op deze wijze wordt
een veiligheidsmarge gecreëerd tegen onverwachte verstoringen in de orderver-
werking die leiden tot extra capaciteitsbehoefte. We gebruiken de resultaten
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van beide families heuristieken om ze te vergelijken met de resultaten van de
policies die de RL-agenten hebben geleerd.

Een essentiële bijdrage van Hoofdstuk 4 is de ontwikkeling van een raam-
werk om de geleerde RL-policies te interpreteren en deze om te zetten in nieuwe
geavanceerde heuristieken. Hoewel dit raamwerk is ontwikkeld in de specifieke
context van het voorliggende OA-probleem, is het zeer algemeen van aard. In
feite kan het worden toegepast op ieder beslissingsprobleem onder onzekerheid.
Het raamwerk is opgebouwd uit drie stappen. In de eerste stap trainen we de
RL-agent en voeren vervolgens met de getrainde agent een lange reeks iteraties
uit. In de tweede stap gebruiken we een eenvoudige data mining techniek om
uit de uitgevoerde serie iteraties expliciete kennis af te leiden omtrent prefe-
rentierelaties in specifieke deelruimtes van de ruimte van mogelijke acties (=
beslissingen). In de derde stap vertalen we de opgedane kennis omtrent actie-
preferenties naar heuristieke regels. De in ons raamwerk vastgelegde methode
is krachtig en universeel. We gebruiken hem voortdurend in de Hoofdstukken
4, 5 en 6.

In Hoofdstuk 5 (Model 3) beschouwen we een uitbreiding van Model 2
uit Hoofdstuk 4. Hier is het bedieningssysteem een multiresource job-shop
waarbij de binnenkomende orders opgebouwd zijn uit een aantal jobs met
voorgeschreven routes langs de resources. De bewerkingstijden van de jobs zijn
stochastisch. De systeemtoestand op een willekeurig beslissingsmoment bestaat
enerzijds uit de lijst binnengekomen orders, anderzijds uit het capaciteitsprofiel,
hetgeen informatie bevat over de jobs die in bewerking zijn, maar ook over
de jobs die geaccepteerd zijn en op bewerking wachten. Een complexe struc-
tuur daar elk van deze geaccepteerde jobs een indicatie dient te hebben van
zijn mogelijke starttijd (of van zijn voorganger) teneinde de precedentierelaties
niet te schenden. Om de RL-agent niet te verblinden met een overdaad aan
toestandsinformatie zetten we de agent als het ware een zonnebril op door
als RL-input gebruik te maken van features, simplificaties van de toestands-
representatie. Uiteraard grijpen de acties die de agent in iedere iteratie aan
de omgeving teruggeeft in op de echte toestanden. Als feature voor de lijst
binnengekomen orders kiezen we alleen die ordertypes die op grond van een
voorlopig EDD toewijzingsplan passen binnen de beschikbare capaciteit. Als
feature voor het capaciteitsprofiel kiezen we het toewijzingsplan dat ontstaat
door de jobs die op bewerking wachten via EDD toe te voegen aan de jobs die
reeds in bewerking zijn. Ook nu gebruiken we een time off als in Hoofdstuk
4. We evalueren een binnengekomen order op grond van een voorlopig EDD
toewijzingsplan waarbij we de nieuwe en de wachtende jobs reschedulen, terwijl
we de jobs in bewerking met rust laten.

Verder introduceren we in Hoofdstuk 5 een methodologie voor het automa-
tisch kalibreren van de trainingsparameters voor de RL-agenten. Deze metho-
dologie is gebaseerd op experimentele resultaten en reductie van het aantal vrije
parameters.
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In Hoofdstuk 6 (Modellen 4, 5 en 6) beschouwen we OA-problemen voorzien
van een onderliggend beslissingsprobleem. Eenvoudigheidshalve nemen we aan
dat binnenkomende orders bestaan uit ten hoogste twee jobs. In Model 4
beschouwen we routeringsbeslissingen in een open job-shop. Het probleem is
identiek aan het multiresource probleem met dit verschil dat er nu niet per
order een routering langs de resources is voorgeschreven. Een beslissing bestaat
uit twee delen: welke orders accepteren we en welke routering kiezen we per
geaccepteerde order.

In Model 5 keren we terug naar de multiresource job-shop van Model 3,
maar voegen de mogelijkheid toe om een deel van een binnenkomende order uit
te besteden. Voor de eenvoud nemen we aan dat alleen de tweede job van een
order mag worden uitbesteed. Per geaccepteerde twee-jobs-order zijn er twee
opties: (1) niet uitbesteden, hetgeen betekent dat beide jobs in de shop worden
uitgevoerd; (2) uitbesteden, waarbij de eerste job in de shop wordt uitgevoerd
en de tweede elders. We bouwen de mogelijkheid in om een grens stellen aan
de totale uitbesteding in een bepaald tijdsinterval.

In Model 6 laten we - in de multiresource job-shop van Model 3 - enige spe-
ling toe in de due-time van een geaccepteerde order. Bij iedere due-time optie
hoort een specifieke opbrengst. Verder is er per optie een bepaalde waarschijn-
lijkheid dat de klant ermee akkoord zal gaan. Om de complexiteit te beperken
beschouwen we per order slechts twee due-time opties. Een beslissing bestaat
uit twee delen: welke orders accepteren we en welke due-time stellen we aan de
klant voor per geaccepteerde order. Een essentieel verschil met de voorgaande
probleemsituaties is dat de klant kan besluiten het systeem te verlaten.

De belangrijkste bijdragen van dit proefschrift laten zich als volgt samenvat-
ten: nieuwe semi-Markov beslissingsmodellen voor OA onder onzekerheid, een
algemene klasse heuristieken voor OA, een methodologie om de RL-trainings-
parameters in te stellen en een algemeen raamwerk om nieuwe heuristische
regels te genereren voor beslissingsproblemen onder onzekerheid door gebruik
te maken van RL. Het geheel van deze bijdragen kan worden opgevat als een
algemene RL-metaheuristiek voor de toepassing van RL op OA. Naar onze
overtuiging is deze algemene aanpak toepasbaar op een veelheid van andere
logistieke beslissingsproblemen.

In dit proefschrift analyseren we 13 probleeminstanties. In de eerste drie
daarvan is de toestandsruimte klein, hetgeen ons in staat stelt de resultaten
van de RL-agenten te vergelijken met optimale policies. In alledrie de gevallen
presteren de RL-agenten beter dan de greedy policies en benaderen ze de resul-
taten van optimale policies. Voor de andere 10 instanties vergelijken we onze
RL-resultaten met die van geparametriseerde deelklassen van een algemene
klasse heuristieken. In alle 10 gevallen presteert de RL-metaheuristiek beter
dan de geparametriseerde heuristieken.

We sluiten af door te stellen dat onze RL-metaheuristiek een waardevolle
optie is om geavanceerde heuristieke regels te genereren, in het bijzonder voor
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problemen met een grote toestandsruimte, waarbij het beslissingsproces plaats-
vindt onder onzekerheid.
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